skip to main content

Title: Stepwise Preparation of meso -Tetraphenyl- and meso -Tetrakis(4-trifluoromethylphenyl)bacteriodilactones and their Zinc(II) and Palladium(II) Complexes: Stepwise Preparation of meso -Tetraphenyl- and meso -Tetrakis(4-trifluoromethylphenyl)bacteriodilactones and their Zinc(II) and Palladium(II) Complexes
Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Award ID(s):
1800361 1359081 1757634
Publication Date:
NSF-PAR ID:
10131432
Journal Name:
European Journal of Organic Chemistry
Volume:
2020
Issue:
4
Page Range or eLocation-ID:
p. 475-482
ISSN:
1434-193X; EJOC
Publisher:
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. meso-Phenyl- and meso-pentafluorophenyl-porpholactones, their metal complexes, as well as porphyrinoids directly derived from them are useful in a number of technical and biomedical applications, and more uses are expected to be discovered. About a dozen competing and complementary pathways toward their synthesis were reported. The suitability of the methods changes with the meso-aryl group and whether the free base or metal derivatives are sought. These circumstances make it hard for anyone outside of the field of synthetic porphyrin chemistry to ascertain which pathway is the best to produce which specific derivative. We report here on what we experimentally evaluated to be the most efficient pathways to generate the six key compounds from the commercially available porphyrins, meso-tetraphenylporphyrin (TPP) and meso-tetrakis(pentafluorophenyl)porphyrin (TFPP): free base meso-tetraphenylporpholactone (TPL) and meso-tetrakis(pentafluorophenyl)porpholactone (TFPL), and their platinum(II) and zinc(II) complexes TPLPt, TFPLPt, TPLZn, and TFPLZn, respectively. Detailed procedures are provided to make these intriguing molecules more readily available for their further study.
  2. The title morpholinochlorin, C 46 H 16 F 20 N 4 O 3 , was crystallized from hexane/methylene chloride as its 0.44 methylene chloride solvate, C 46 H 16 F 20 N 4 O 3 ·0.44CH 2 Cl 2 . The morpholinochlorin was synthesized by stepwise oxygen insertion into a porphyrin using a `breaking and mending strategy': NaIO 4 -induced diol cleavage of the corresponding 2,3-dihydroxychlorin with in situ methanol-induced, acid-catalyzed intramolecular ring closure of the intermediate secochlorins bisaldehyde. Formally, one of the pyrrolic building blocks was thus replaced by a 2,3-dimethoxymorpholine moiety. Like other morpholinochlorins, the macrocycle of the title compound adopts a ruffled conformation, and the modulation of the porphyrinic π-system chromophore induces a red-shift of its optical spectrum compared to its corresponding chlorin analog. Packing in the crystal is governed by interactions involving the fluorine atoms of the pentafluorophenyl substituents, dominated by C—H...F interactions, and augmented by short fluorine...fluorine contacts, C—F...π interactions, and one severely slipped π-stacking interaction between two pentafluorophenyl rings. The solvate methylene chloride molecule is disordered over two independent positions around an inversion center with occupancies of two × 0.241 (5) and two × 0.199 (4), for a total site occupancy of 88%.