skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: A comprehensive model for the kyr and Myr timescales of Earth's axial magnetic dipole field
Abstract. We consider a stochastic differential equation modelfor Earth's axial magnetic dipole field.Our goal is to estimate the model's parametersusing diverse and independent data sources that had previously been treated separately,so that the model is a valid representation of an expanded paleomagnetic recordon kyr to Myr timescales.We formulate the estimation problem within the Bayesian frameworkand define a feature-based posterior distributionthat describes probabilities of model parameters givena set of features derived from the data.Numerically, we use Markov chain Monte Carlo (MCMC)to obtain a sample-based representation of the posterior distribution.The Bayesian problem formulation and its MCMC solutionallow us to study the model's limitations and remaining posterior uncertainties.Another important aspect of our overall approach is thatit reveals inconsistencies between model and data or within the various data sets.Identifying these shortcomings is a first and necessary step towards building more sophisticated models or towards resolving inconsistencies within the data.The stochastic model we derive representsselected aspects of the long-term behavior of the geomagnetic dipole fieldwith limitations and errors that are well defined.We believe that such a model is useful (besides its limitations) for hypothesis testing and give a few examples of how the model can be used in this context.  more » « less
Award ID(s):
1644644
NSF-PAR ID:
10131454
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nonlinear Processes in Geophysics
Volume:
26
Issue:
3
ISSN:
1607-7946
Page Range / eLocation ID:
123 to 142
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Uncertainty quantification of groundwater (GW) aquifer parameters is critical for efficient management and sustainable extraction of GW resources. These uncertainties are introduced by the data, model, and prior information on the parameters. Here, we develop a Bayesian inversion framework that uses Interferometric Synthetic Aperture Radar (InSAR) surface deformation data to infer the laterally heterogeneous permeability of a transient linear poroelastic model of a confined GW aquifer. The Bayesian solution of this inverse problem takes the form of a posterior probability density of the permeability. Exploring this posterior using classical Markov chain Monte Carlo (MCMC) methods is computationally prohibitive due to the large dimension of the discretized permeability field and the expense of solving the poroelastic forward problem. However, in many partial differential equation (PDE)‐based Bayesian inversion problems, the data are only informative in a few directions in parameter space. For the poroelasticity problem, we prove this property theoretically for a one‐dimensional problem and demonstrate it numerically for a three‐dimensional aquifer model. We design a generalized preconditioned Crank‐Nicolson (gpCN) MCMC method that exploits this intrinsic low dimensionality by using a low‐rank‐based Laplace approximation of the posterior as a proposal, which we build scalably. The feasibility of our approach is demonstrated through a real GW aquifer test in Nevada. The inherently two‐dimensional nature of InSAR surface deformation data informs a sufficient number of modes of the permeability field to allow detection of major structures within the aquifer, significantly reducing the uncertainty in the pressure and the displacement quantities of interest.

     
    more » « less
  2. Stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Hamiltonian Monte Carlo (SGHMC) are two popular Markov Chain Monte Carlo (MCMC) algorithms for Bayesian inference that can scale to large datasets, allowing to sample from the posterior distribution of the parameters of a statistical model given the input data and the prior distribution over the model parameters. However, these algorithms do not apply to the decentralized learning setting, when a network of agents are working collaboratively to learn the parameters of a statistical model without sharing their individual data due to privacy reasons or communication constraints. We study two algorithms: Decentralized SGLD (DE-SGLD) and Decentralized SGHMC (DE-SGHMC) which are adaptations of SGLD and SGHMC methods that allow scaleable Bayesian inference in the decentralized setting for large datasets. We show that when the posterior distribution is strongly log-concave and smooth, the iterates of these algorithms converge linearly to a neighborhood of the target distribution in the 2-Wasserstein distance if their parameters are selected appropriately. We illustrate the efficiency of our algorithms on decentralized Bayesian linear regression and Bayesian logistic regression problems 
    more » « less
  3. McCulloch, R. (Ed.)
    Varying coefficient models (VCMs) are widely used for estimating nonlinear regression functions for functional data. Their Bayesian variants using Gaussian process priors on the functional coefficients, however, have received limited attention in massive data applications, mainly due to the prohibitively slow posterior computations using Markov chain Monte Carlo (MCMC) algorithms. We address this problem using a divide-and-conquer Bayesian approach. We first create a large number of data subsamples with much smaller sizes. Then, we formulate the VCM as a linear mixed-effects model and develop a data augmentation algorithm for obtaining MCMC draws on all the subsets in parallel. Finally, we aggregate the MCMC-based estimates of subset posteriors into a single Aggregated Monte Carlo (AMC) posterior, which is used as a computationally efficient alternative to the true posterior distribution. Theoretically, we derive minimax optimal posterior convergence rates for the AMC posteriors of both the varying coefficients and the mean regression function. We provide quantification on the orders of subset sample sizes and the number of subsets. The empirical results show that the combination schemes that satisfy our theoretical assumptions, including the AMC posterior, have better estimation performance than their main competitors across diverse simulations and in a real data analysis. 
    more » « less
  4. Discovering interaction effects on a response of interest is a fundamental problem faced in biology, medicine, economics, and many other scientific disciplines. In theory, Bayesian methods for discovering pairwise interactions enjoy many benefits such as coherent uncertainty quantification, the ability to incorporate background knowledge, and desirable shrinkage properties. In practice, however, Bayesian methods are often computationally intractable for even moderate- dimensional problems. Our key insight is that many hierarchical models of practical interest admit a Gaussian process representation such that rather than maintaining a posterior over all O(p^2) interactions, we need only maintain a vector of O(p) kernel hyper-parameters. This implicit representation allows us to run Markov chain Monte Carlo (MCMC) over model hyper-parameters in time and memory linear in p per iteration. We focus on sparsity-inducing models and show on datasets with a variety of covariate behaviors that our method: (1) reduces runtime by orders of magnitude over naive applications of MCMC, (2) provides lower Type I and Type II error relative to state-of-the-art LASSO-based approaches, and (3) offers improved computational scaling in high dimensions relative to existing Bayesian and LASSO-based approaches. 
    more » « less
  5. ABSTRACT We introduce Bilby-MCMC, a Markov chain Monte Carlo sampling algorithm tuned for the analysis of gravitational waves from merging compact objects. Bilby-MCMC provides a parallel-tempered ensemble Metropolis-Hastings sampler with access to a block-updating proposal library including problem-specific and machine learning proposals. We demonstrate that learning proposals can produce over a 10-fold improvement in efficiency by reducing the autocorrelation time. Using a variety of standard and problem-specific tests, we validate the ability of the Bilby-MCMC sampler to produce independent posterior samples and estimate the Bayesian evidence. Compared to the widely used Dynesty nested sampling algorithm, Bilby-MCMC is less efficient in producing independent posterior samples and less accurate in its estimation of the evidence. However, we find that posterior samples drawn from the Bilby-MCMC sampler are more robust: never failing to pass our validation tests. Meanwhile, the Dynesty sampler fails the difficult-to-sample Rosenbrock likelihood test, over constraining the posterior. For CBC problems, this highlights the importance of cross-sampler comparisons to ensure results are robust to sampling error. Finally, Bilby-MCMC can be embarrassingly and asynchronously parallelized making it highly suitable for reducing the analysis wall-time using a High Throughput Computing environment. Bilby-MCMC may be a useful tool for the rapid and robust analysis of gravitational-wave signals during the advanced detector era and we expect it to have utility throughout astrophysics. 
    more » « less