Monte Carlo algorithms, such as Markov chain Monte Carlo (MCMC) and Hamiltonian Monte Carlo (HMC), are routinely used for Bayesian inference; however, these algorithms are prohibitively slow in massive data settings because they require multiple passes through the full data in every iteration. Addressing this problem, we develop a scalable extension of these algorithms using the divide‐and‐conquer (D&C) technique that divides the data into a sufficiently large number of subsets, draws parameters in parallel on the subsets using apoweredlikelihood and produces Monte Carlo draws of the parameter by combining parameter draws obtained from each subset. The combined parameter draws play the role of draws from the original sampling algorithm. Our main contributions are twofold. First, we demonstrate through diverse simulated and real data analyses focusing on generalized linear models (GLMs) that our distributed algorithm delivers comparable results as the current state‐of‐the‐art D&C algorithms in terms of statistical accuracy and computational efficiency. Second, providing theoretical support for our empirical observations, we identify regularity assumptions under which the proposed algorithm leads to asymptotically optimal inference. We also provide illustrative examples focusing on normal linear and logistic regressions where parts of our D&C algorithm are analytically tractable.
more »
« less
Distributed Bayesian Varying Coefficient Modeling Using a Gaussian Process Prior
Varying coefficient models (VCMs) are widely used for estimating nonlinear regression functions for functional data. Their Bayesian variants using Gaussian process priors on the functional coefficients, however, have received limited attention in massive data applications, mainly due to the prohibitively slow posterior computations using Markov chain Monte Carlo (MCMC) algorithms. We address this problem using a divide-and-conquer Bayesian approach. We first create a large number of data subsamples with much smaller sizes. Then, we formulate the VCM as a linear mixed-effects model and develop a data augmentation algorithm for obtaining MCMC draws on all the subsets in parallel. Finally, we aggregate the MCMC-based estimates of subset posteriors into a single Aggregated Monte Carlo (AMC) posterior, which is used as a computationally efficient alternative to the true posterior distribution. Theoretically, we derive minimax optimal posterior convergence rates for the AMC posteriors of both the varying coefficients and the mean regression function. We provide quantification on the orders of subset sample sizes and the number of subsets. The empirical results show that the combination schemes that satisfy our theoretical assumptions, including the AMC posterior, have better estimation performance than their main competitors across diverse simulations and in a real data analysis.
more »
« less
- Award ID(s):
- 2220840
- PAR ID:
- 10326938
- Editor(s):
- McCulloch, R.
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 23
- Issue:
- 84
- ISSN:
- 1533-7928
- Page Range / eLocation ID:
- 1-59
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Hamiltonian Monte Carlo (SGHMC) are two popular Markov Chain Monte Carlo (MCMC) algorithms for Bayesian inference that can scale to large datasets, allowing to sample from the posterior distribution of the parameters of a statistical model given the input data and the prior distribution over the model parameters. However, these algorithms do not apply to the decentralized learning setting, when a network of agents are working collaboratively to learn the parameters of a statistical model without sharing their individual data due to privacy reasons or communication constraints. We study two algorithms: Decentralized SGLD (DE-SGLD) and Decentralized SGHMC (DE-SGHMC) which are adaptations of SGLD and SGHMC methods that allow scaleable Bayesian inference in the decentralized setting for large datasets. We show that when the posterior distribution is strongly log-concave and smooth, the iterates of these algorithms converge linearly to a neighborhood of the target distribution in the 2-Wasserstein distance if their parameters are selected appropriately. We illustrate the efficiency of our algorithms on decentralized Bayesian linear regression and Bayesian logistic regression problemsmore » « less
-
Abstract Parameters in climate models are usually calibrated manually, exploiting only small subsets of the available data. This precludes both optimal calibration and quantification of uncertainties. Traditional Bayesian calibration methods that allow uncertainty quantification are too expensive for climate models; they are also not robust in the presence of internal climate variability. For example, Markov chain Monte Carlo (MCMC) methods typically requiremodel runs and are sensitive to internal variability noise, rendering them infeasible for climate models. Here we demonstrate an approach to model calibration and uncertainty quantification that requires onlymodel runs and can accommodate internal climate variability. The approach consists of three stages: (a) a calibration stage uses variants of ensemble Kalman inversion to calibrate a model by minimizing mismatches between model and data statistics; (b) an emulation stage emulates the parameter‐to‐data map with Gaussian processes (GP), using the model runs in the calibration stage for training; (c) a sampling stage approximates the Bayesian posterior distributions by sampling the GP emulator with MCMC. We demonstrate the feasibility and computational efficiency of this calibrate‐emulate‐sample (CES) approach in a perfect‐model setting. Using an idealized general circulation model, we estimate parameters in a simple convection scheme from synthetic data generated with the model. The CES approach generates probability distributions of the parameters that are good approximations of the Bayesian posteriors, at a fraction of the computational cost usually required to obtain them. Sampling from this approximate posterior allows the generation of climate predictions with quantified parametric uncertainties.more » « less
-
Abstract Big datasets are gathered daily from different remote sensing platforms. Recently, statistical co‐kriging models, with the help of scalable techniques, have been able to combine such datasets by using spatially varying bias corrections. The associated Bayesian inference for these models is usually facilitated via Markov chain Monte Carlo (MCMC) methods which present (sometimes prohibitively) slow mixing and convergence because they require the simulation of high‐dimensional random effect vectors from their posteriors given large datasets. To enable fast inference in big data spatial problems, we propose the recursive nearest neighbor co‐kriging (RNNC) model. Based on this model, we develop two computationally efficient inferential procedures: (a) the collapsed RNNC which reduces the posterior sampling space by integrating out the latent processes, and (b) the conjugate RNNC, an MCMC free inference which significantly reduces the computational time without sacrificing prediction accuracy. An important highlight of conjugate RNNC is that it enables fast inference in massive multifidelity data sets by avoiding expensive integration algorithms. The efficient computational and good predictive performances of our proposed algorithms are demonstrated on benchmark examples and the analysis of the High‐resolution Infrared Radiation Sounder data gathered from two NOAA polar orbiting satellites in which we managed to reduce the computational time from multiple hours to just a few minutes.more » « less
-
Yang, Junyuan (Ed.)In this work, we develop a new set of Bayesian models to perform registration of real-valued functions. A Gaussian process prior is assigned to the parameter space of time warping functions, and a Markov chain Monte Carlo (MCMC) algorithm is utilized to explore the posterior distribution. While the proposed model can be defined on the infinite-dimensional function space in theory, dimension reduction is needed in practice because one cannot store an infinite-dimensional function on the computer. Existing Bayesian models often rely on some pre-specified, fixed truncation rule to achieve dimension reduction, either by fixing the grid size or the number of basis functions used to represent a functional object. In comparison, the new models in this paper randomize the truncation rule. Benefits of the new models include the ability to make inference on the smoothness of the functional parameters, a data-informative feature of the truncation rule, and the flexibility to control the amount of shape-alteration in the registration process. For instance, using both simulated and real data, we show that when the observed functions exhibit more local features, the posterior distribution on the warping functions automatically concentrates on a larger number of basis functions. Supporting materials including code and data to perform registration and reproduce some of the results presented herein are available online.more » « less
An official website of the United States government

