skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Declines in an abundant aquatic insect, the burrowing mayfly, across major North American waterways
Seasonal animal movement among disparate habitats is a fundamental mechanism by which energy, nutrients, and biomass are transported across ecotones. A dramatic example of such exchange is the annual emergence of mayfly swarms from freshwater benthic habitats, but their characterization at macroscales has remained impossible. We analyzed radar observations of mayfly emergence flights to quantify long-term changes in annual biomass transport along the Upper Mississippi River and Western Lake Erie Basin. A single emergence event can produce 87.9 billion mayflies, releasing 3,078.6 tons of biomass into the airspace over several hours, but in recent years, production across both waterways has declined by over 50%. As a primary prey source in aquatic and terrestrial ecosystems, these declines will impact higher trophic levels and environmental nutrient cycling.  more » « less
Award ID(s):
1840230
PAR ID:
10131479
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
6
ISSN:
0027-8424
Page Range / eLocation ID:
p. 2987-2992
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Hydrological impacts on aquatic biota have been assessed in numerous empirical studies. Aquatic insects are severely affected by population declines and consequent diversity loss. However, many uncertainties remain regarding the effects of hydrology on insect production and the consequences of energy transfer to the terrestrial ecosystem. Likewise, sublethal effects on insect morphology remain poorly quantified in highly variable environments. Here, we characterized monthly fluctuation in benthic and emerged biomass of Ephemeroptera in a tropical lowland stream. We quantified the proportion of mayfly production that emerges into the riparian forest. We also examined the potential morphological changes in Farrodes caribbianus (the most abundant mayfly in our samples) due to environmental stress. Methods We collected mayflies (nymphs and adults) in a first-order stream in Costa Rica. We compared benthic and adult biomass from two years’ worth of samples, collected with a core sampler (0.006 m 2 ) and a 2 m 2 -emergence trap. The relationship between emergence and annual secondary production (E/P) was used to estimate the Ephemeroptera production that emerged as adults. A model selection approach was used to determine the relationship between environmental variables that were collected monthly and the emergent biomass. To determine potential departures from perfect bilateral symmetry, we evaluated the symmetry of two morphological traits (forceps and forewing) of F. caribbianus adults. We used Spearman’s rank correlation coefficients (ρ) to examine potential changes in adult body length as a possible response to environmental stress. Results Benthic biomass was variable, with peaks throughout the study period. However, peaks in benthic biomass did not lead to increases in mayfly emergence, which remained stable over time. Relatively constant mayfly emergence suggests that they were aseasonal in tropical lowland streams. Our E/P estimate indicated that approximately 39% and 20% (for 2002 and 2003, respectively) of the nymph production emerged as adults. Our estimated proportion of mayfly production transferred to terrestrial ecosystems was high relative to reports from temperate regions. We observed a strong negative response of F . caribbianus body length to increased hydrology (Spearman: ρ = −0.51, p < 0.001), while slight departures from perfect symmetry were observed in all traits. Conclusion Our two years study demonstrates that there was large temporal variability in mayfly biomass that was unrelated to hydrological fluctuations, but potentially related to trophic interactions (e.g., fish predation). Body length was a good indicator of environmental stress, which could have severe associated costs for mayfly fitness in ecosystems with high temporal variation. Our results highlight the complex ecological and evolutionary dynamics of tropical aquatic insects, and the intricate connection between aquatic and terrestrial ecosystems. 
    more » « less
  2. Abstract Hurricanes are major disturbances with important consequences to stream ecosystems as they create major floods and remove riparian vegetation. Understanding their impacts is a priority, as hurricane intensity is expected to increase due to global climate change.Mayfly assemblages in streams fill a diversity of ecological roles and functions. They are important consumers of algae by scraping benthic biofilms and detritivores associated with fine particles and leaf litter. Other taxa are filterers and even predators. Mayflies are also important prey items in aquatic and terrestrial food webs.Here, we assessed the effects of two consecutive hurricanes that impacted Puerto Rico in 2017 to understand how hurricane‐induced changes in the environment alter mayfly composition, secondary production and emergence.The study was conducted in the Luquillo Experimental Forest, Puerto Rico. Mayflies were sampled as nymphs and emerging adults for 6 months before and 17 months after hurricanes Irma and María hit the island in September 2017. Leaf litter inputs, canopy cover and chlorophyllaconcentrations were monitored along with mayflies.Mayfly assemblages were dominated by two genera of Leptophlebiidae before the hurricane,Neohagenulus (two species: N. julioTraver, 1938,N. luteolusTraver, 1938) andBorinquena (one species: B. carmencitaTraver, 1938). Both genera decreased in density after the hurricanes and were replaced with the BaetidaeCloeodes maculipesTraver, 1938 as the dominant taxon. This pattern was observed in both nymph and emerging adult densities.The secondary production of Leptophlebiidae species was highest before hurricane disturbance, with the BaetidaeC. maculipesshowing the opposite pattern.Neohagenulushad an annual production of 445 mg m−2 year−1,C. maculipesof 153 mg m−2 year−1andB. carmencitaof 68 mg m−2 year−1.Overall, the mayfly assemblages in our studied stream are vulnerable to hurricane disturbances. Expected increases in hurricane impacts might result in assemblage shifts that could change assemblage composition and alter energy flows within the ecosystem. 
    more » « less
  3. While altered precipitation regimes can greatly impact biodiversity and ecosystem functioning, we lack a comprehensive view of how these impacts are mediated by changes to the seasonality of precipitation (i.e., whether it rains more/less in one season relative to another). Over 2 years, we examined how altered seasonal precipitation influenced annual plant biomass and species richness, Simpson’s diversity, and community composition of annual plant communities in a dryland ecosystem that receives both winter and summer rainfall and has distinct annual plant communities in each season. Using a rainfall exclusion, collection, and distribution system, we excluded precipitation and added water during each season individually and compared responses to control plots which received ambient summer and winter precipitation. In control plots, we found five times greater annual plant biomass, twice as many species, and higher diversity in winter relative to summer. Adding water increased annual plant biomass in summer only, did not change richness or diversity in either summer or winter, and modestly shifted community composition. Excluding precipitation in either season reduced annual plant biomass, richness, and Simpson’s diversity. However, in the second winter season, biomass was higher in the plots where precipitation was excluded in the previous summer seasons suggesting that reduced productivity in the summer may facilitate biomass in the winter. Our results suggest that increased precipitation in summer may have stronger short-term impacts on annual plant biodiversity and ecosystem function relative to increased winter precipitation. In contrast, decreasing precipitation may have ubiquitous negative effects on annual plants across both summer and winter but may lead to increased biomass in the following off-seasons. These patterns suggest that annual plant communities exhibit asymmetries in their community and ecosystem responses to altered seasonal precipitation and that considering the seasonality of precipitation is important for predicting the effects of altered precipitation regimes. 
    more » « less
  4. Abstract AimClimate change is broadly affecting phenology, but species‐specific phenological response to temperature is not well understood. In streams, insect emergence has important ecosystem‐level consequences because emergent adults link aquatic and terrestrial food webs. We quantified emergence timing and duration (within‐population synchronicity) of insects among streams along a spatiotemporal gradient of mean water temperature in a montane basin to assess the sensitivity of these phenological traits to heat accumulation from mid‐winter through spring emergence periods. LocationSix headwater streams in the Lookout Creek basin, H.J. Andrews Experimental Forest, Oregon, USA. MethodsWe collected emerging adults of four abundant insect species twice weekly throughout spring for 6 consecutive years. We fit Gaussian models to the empirical temporal distributions to characterize peak emergence timing (mean) and duration (days between 5th and 95th percentiles) for each species/stream/year combination. We then quantified relationships between degree‐day accumulation and phenological response. ResultsOnly one of the four species (a caddisfly) showed a simple response of earlier emergence timing in both warmer streams and years. One stonefly had lengthy emergence periods resulting in substantial phenological overlap between warmer and cooler streams/years. Interestingly, two species (a mayfly and a stonefly) responded strongly to temporal (interannual) temperature differences but minimally to spatial differences, indicating that emergence was nearly synchronous among streams, within years. These two species had among‐stream differences approaching 500 degree‐days from mid‐winter to peak emergence. Conversely, duration of emergence was more strongly associated with spatial than temporal differences, with longer duration in lower‐elevation (warmer) streams. Main conclusionsEmergence phenology has species‐specific responses to temperature likely driven by complex cues for diapause or quiescence periods during preceding life cycle stages. We hypothesize a trade‐off between complex phenological response that synchronizes emergence among heterogeneous sites and other traits such as adult longevity and dispersal capacity. 
    more » « less
  5. ABSTRACT Emerging aquatic insects can be an important resource subsidy for a variety of terrestrial consumers, including spiders, birds, bats and lizards. Emergence flux is influenced by a variety of abiotic and biotic variables, such as temperature, drying, and predators and these variables can also control the body size of emergent insects. Despite their importance, these variables can change rapidly during drought conditions as water temperatures rise, surface area decreases and predator densities increase.During 2018, the Konza Prairie Biological Station experienced a record drought: flow ceased in the lower reaches of Kings Creek for the first time in over 40 years of observation, leaving a series of isolated pools. We studied how the drought affected aquatic insect emergence in 12 of these pools via elevated temperatures, decreased surface area, and concentration of predators (e.g. fishes and crayfish) over a four‐week period. We returned in 2020 and sampled emergence in the same pools over 2 weeks under non‐drought conditions to compare emergence between drought and non‐drought conditions.We found three overall patterns: (1) rates of areal emergence abundance and biomass (number or mg DM m−2d−1) did not differ between drought and non‐drought conditions. In contrast, pool‐scale emergence abundance, but not biomass (number or mg DM pool−1d−1), was lower during drought conditions; (2) average midge body size was larger during the drought relative to the non‐drought conditions; (3) environmental variables (e.g. temperature, pool surface area, predator biomass) were not predictive of emergence during drought and non‐drought conditions.Fewer, but larger emergent midges (as seen under drought conditions) may represent a higher quality resource for terrestrial consumers than many smaller midges due to increased per‐capita energy yield. However, due to the overall decrease in water availability throughout the stream network, the overall emergence flux was concentrated in reaches with remaining water during the drought, making pools emergence subsidy hotspots. Overall, these contrasting responses underscore the complex nature of community responses to shifting climatic conditions. 
    more » « less