skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extending the Tunable Plasma Wavelength in III–V Semiconductors from the Mid‐Infrared to the Short‐Wave Infrared by Embedding Self‐Assembled ErAs Nanostructures in GaAs
Abstract The group III–V semiconductor photonic system is attractive to photonics engineers because it provides a complete set of photonic components. A plasmonic material that can be epitaxially integrated with the group III–V photonic system will potentially lead to many applications leveraging plasmonics and metamaterials. In this work, the shortest plasma wavelength ever reported in a III–V‐based material is demonstrated by epitaxially embedding ErAs into GaAs. This composite material acts as a tunable plasmonic material across the technologically important 2.68–6 µm infrared window. The growth window of this material is demonstrated to be much wider than other current heavily doped III–V plasmonic materials. Additionally, it is shown that the scattering rate can be reduced by increasing the growth temperature. The wide growth temperature range, designer plasmonic response, and the ease of epitaxial integration with other III–V semiconductor devices demonstrate the potential of ErAs:GaAs nanocomposites for the creation of a new type of metamaterial and other novel optoelectronic and nanophotonic applications.  more » « less
Award ID(s):
1839056
PAR ID:
10131485
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
8
Issue:
7
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. III–V semiconductor type-II superlattices (T2SLs) are a promising material system with the potential to significantly reduce the dark current of, and thus realize high-performance in, infrared photodetectors at elevated temperatures. However, T2SLs have struggled to meet the performance metrics set by the long-standing infrared detector material of choice, HgCdTe. Recently, epitaxial plasmonic detector architectures have demonstrated T2SL detector performance comparable to HgCdTe in the 77–195 K temperature range. Here, we demonstrate a high operating temperature plasmonic T2SL detector architecture with high-performance operation at temperatures accessible with two-stage thermoelectric coolers. Specifically, we demonstrate long-wave infrared plasmonic detectors operating at temperatures as high as 230 K while maintaining dark currents below the “Rule 07” heuristic. At a detector operating temperature of 230 K, we realize 22.8% external quantum efficiency in a detector absorber only 372 nm thick ([Formula: see text]) with a peak specific detectivity of 2.29 × 109cm Hz1∕2W−1at 9.6  μm, well above commercial detectors at the same operating temperature. 
    more » « less
  2. Highly doped semiconductor “designer metals” have been shown to serve as high-quality plasmonic materials across much of the long-wavelength portion of the mid-infrared. These plasmonic materials benefit from a technologically mature semiconductor fabrication infrastructure and the potential for monolithic integration with electronic and photonic devices. However, accessing the short-wavelength side of the mid-infrared is a challenge for these designer metals. In this work we study the perspectives for extending the plasmonic response of doped semiconductors to shorter wavelengths by leveraging charge confinement, in addition to doping. We demonstrate, theoretically and experimentally, negative permittivity across the technologically vital mid-wave infrared (3–5  μ<#comment/> m) frequency range. The semiconductor composites presented in our work offer an ideal material platform for monolithic integration with a variety of semiconductor optoelectronic devices operating in the mid-wave infrared. 
    more » « less
  3. Plasmonic materials, and their ability to enable strong concentration of optical fields, have offered a tantalizing foundation for the demonstration of sub-diffraction-limit photonic devices. However, practical and scalable plasmonic optoelectronics for real world applications remain elusive. In this work, we present an infrared photodetector leveraging a device architecture consisting of a “designer” epitaxial plasmonic metal integrated with a quantum-engineered detector structure, all in a mature III-V semiconductor material system. Incident light is coupled into surface plasmon-polariton modes at the detector/designer metal interface, and the strong confinement of these modes allows for a sub-diffractive ( ∼<#comment/> λ<#comment/> 0 / 33 ) detector absorber layer thickness, effectively decoupling the detector’s absorption efficiency and dark current. We demonstrate high-performance detectors operating at non-cryogenic temperatures ( T = 195 K ), without sacrificing external quantum efficiency, and superior to well-established and commercially available detectors. This work provides a practical and scalable plasmonic optoelectronic device architecture with real world mid-infrared applications. 
    more » « less
  4. Abstract Controlling both the spectral bandwidth and directionality of emitted thermal radiation is a fundamental challenge in contemporary photonics. Recent work has shown that materials with a spatial gradient in the frequency range of their epsilon‐near‐zero (ENZ) response can support broad spectrum directionality in their emissivity, enabling high total radiance to specific angles of incidence. However, this capability is limited spectrally and directionally by the availability of materials with phonon‐polariton resonances over long‐wave infrared wavelengths. Here, an approach is designed and experimentally demonstrated using doped III–V semiconductors that can simultaneously tailor spectral peak, bandwidth, and directionality of infrared emissivity. InAs‐based gradient ENZ photonic structures that exhibit broadband directional emission with varying spectral bandwidths and directional ranges as a function of their doping concentration profile and thickness are epitaxially grown and characterized. Due to its easy‐to‐fabricate geometry, it is believed that this approach provides a versatile photonic platform to dynamically control broadband spectral and directional emissivity for a range of emerging applications in heat transfer and infrared sensing. 
    more » « less
  5. N-polar AlGaN is an emerging wide-bandgap semiconductor for next-generation high electron mobility transistors and ultraviolet light emitting diodes and lasers. Here, we demonstrate the growth and characterization of high-quality N-polar AlGaN films on C-face 4H-silicon carbide (SiC) substrates by molecular beam epitaxy. On optimization of the growth conditions, N-polar AlGaN films exhibit a crack free, atomically smooth surface (rms roughness ∼ 0.9 nm), and high crystal quality with low density of defects and dislocations. The N-polar crystallographic orientation of the epitaxially grown AlGaN film is unambiguously confirmed by wet chemical etching. We demonstrate precise compositional tunability of the N-polar AlGaN films over a wide range of Al content and a high internal quantum efficiency ∼74% for the 65% Al content AlGaN film at room temperature. Furthermore, controllable silicon (Si) doping in high Al content (65%) N-polar AlGaN films has been demonstrated with the highest mobility value ∼65 cm2/V-s observed corresponding to an electron concentration of 1.1 × 1017 cm−3, whereas a relatively high mobility value of 18 cm2/V-s is sustained for an electron concentration of 3.2 × 1019 cm−3, with an exceptionally low resistivity value of 0.009 Ω·cm. The polarity-controlled epitaxy of AlGaN on SiC presents a viable approach for achieving high-quality N-polar III-nitride semiconductors that can be harnessed for a wide range of emerging electronic and optoelectronic device applications. 
    more » « less