After release into the aquatic environment, engineered nanomaterials (ENMs) undergo complex chemical and physical transformations that alter their environmental fate and toxicity to aquatic organisms. Hyalella azteca are sediment-dwelling amphipods predicted to have a high exposure level to ENMs and have previously shown to be highly sensitive to ZnO nanoparticles (NPs). To investigate the impacts of environmentally transformed ZnO NPs and determine the route of uptake for these particles, we exposed H. azteca to ZnSO 4 , ZnO NPs, and environmental aged ZnO NPs which resulted in three types of particles: 30 nm ZnO–Zn 3 (PO 4 ) 2 core–shell structures (p8-ZnO NPs), micron scale hopeite-like phase Zn 3 (PO 4 ) 2 ·4H 2 O (p6-ZnO NPs), and ZnS nano-clusters (s-ZnO NPs). Treatments included freshwater, saltwater (3 ppt), and the presence of sediment, with a final treatment where animals were contained within mesh baskets to prevent burrowing in the sediment. Dissolution was close to 100% for the pristine ZnO NPs and phosphate transformed NPs, while s-ZnO NPs resulted in only 20% dissolution in the water only exposures. In the freshwater exposure, the pristine and phosphate transformed ZnO NPs were more toxic (LC 50 values 0.11–0.18 mg L −1 ) than ZnSO 4 (LC 50 = 0.26 mg L −1 ) and the s-ZnO NPs (LC 50 = 0.29 mg L −1 ). Saltwater treatments reduced the toxicity of ZnSO 4 and all the ZnO NPs. In the presence of sediment, water column concentrations of Zn were reduced to 10% nominal concentrations and toxicity in the sediment with basket treatment was similarly reduced by a factor of 10. Toxicity was further reduced in the sediment only treatments where the sediments appeared to provide a refuge for H. azteca . In addition, particle specific differences in toxicity were less apparent in the presence of sediment. Bioaccumulation was similar across the different Zn exposures, but decreased with reduced toxicity in the saltwater and sediment treatments. Overall, the results suggest that H. azteca is exposed to ZnO NPs through the water column and NP transformations in the presence of phosphate do not reduce their toxicity. Sulfidized ZnO NPs have reduced toxicity, but their similar level of bioaccumulation in H. azteca suggests that trophic transfer of these particles will occur.
more »
« less
Identification of toxicity effects of Cu 2 O materials on C. elegans as a function of environmental ionic composition
Previous work has shown that spherical CuO nanomaterials show negative effects on cell and animal physiology. The biological effects of Cu 2 O materials, which possess unique chemical features compared to CuO nanomaterials and can be synthesized in a similarly large variety of shapes and sizes, are comparatively less studied. Here, we synthesized truncated octahedral Cu 2 O particles and characterized their structure, stability, and physiological effects in the nematode worm animal model, Caenorhabditis elegans . Cu 2 O particles were found to be generally stable in aqueous media, although the particles did show signs of oxidation and leaching of Cu 2+ within hours in worm growth media. The particles were found to be especially sensitive to inorganic phosphate (PO 4 3− ) found in standard NGM nematode growth medium. Cu 2 O particles were observed being taken up into the nematode pharynx and detected in the lumen of the gut. Toxicity experiments revealed that treatment with Cu 2 O particles caused a significant reduction in animal size and lifespan. These toxic effects resembled treatment with Cu 2+ , but measurements of Cu leaching, worm size, and long-term behavior experiments show the particles are more toxic than expected from Cu ion leaching alone. These results suggest worm ingestion of intact Cu 2 O particles enhances their toxicity and behavior effects while particle exposure to environmental phosphate precipitates leached Cu 2+ into biounavailable phosphate salts. Interestingly, the worms showed an acute avoidance of bacterial food with Cu 2 O particles, suggesting that animals can detect chemical features of the particles and/or their breakdown products and actively avoid areas with them. These results will help to understand how specific, chemically-defined particles proposed for use in polluted soil and wastewater remediation affect animal toxicity and behaviors in their natural environment.
more »
« less
- Award ID(s):
- 1844657
- PAR ID:
- 10132096
- Date Published:
- Journal Name:
- Environmental Science: Nano
- ISSN:
- 2051-8153
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The local structure of the highly “overdoped” 95 K superconductor Sr2CuO3.3determined by Cu K X-ray absorption fine structure (XAFS) at 62 K in magnetically oriented samples shows that 1) the magnetization is perpendicular to thecaxis; 2) at these levels of precision the Cu sublattice is tetragonal in agreement with the crystal structure; the O sublattice has 3) continuous -Cu-O- chains that orient perpendicular to an applied magnetic field; 4) approximately half-filled -Cu-O- chains that orient parallel to this field; 5) a substantial number of apical O vacancies; 6) O ions at some apical positions with expanded Cu-O distances; and 7) interstitial positions that imply highly displaced Sr ions. These results contradict the universally accepted features of cuprates that require intact CuO2planes, magnetization along thecaxis, and a termination of the superconductivity when the excess charge on the CuO2Cu ions exceeds 0.27. These radical differences in charge and structure demonstrate that this compound constitutes a separate class of Cu-O–based superconductors in which the superconductivity originates in a different, more complicated structural unit than CuO2planes while retaining exceptionally high transition temperatures.more » « less
-
Engineered nanomaterials have unique properties compared to their bulk counterparts. Copper oxide nanoparticles (CuO NPs) are one example of nanomaterials used in a wide range of consumer products due to their conductivity and biocidal properties. While CuO NPs can induce toxicity in various organisms, their interactions with different organisms and how they affect cellular homeostasis is yet to be fully understood. In this work, the toxicity of CuO NPs was evaluated in different human cell lines (colorectal carcinoma, cervical cancer, embryonic kidney, and lung fibroblast), showing a dose-dependent toxicity. An untargeted lipidomics approach using liquid chromatography-quadrupole time of flight mass spectrometry was employed in a human colon carcinoma cell line to investigate the impact of CuO NP exposure at the cellular level. A 24 h CuO NP exposure at 2.5 and 5 μg mL −1 resulted in upregulation of different metabolites: triacylglycerols, phosphatidylcholines, and ceramides accumulated. The most profound increase in a dose-dependent manner was observed in ceramides, specifically in C18:0, C18:1, and C22:0 species, with up to ∼10 fold accumulations. Further experiments suggested that activation of autophagy and oxidative stress could be responsible for the toxicity observed in these cell lines. Increases in the level of glutathione oxide (∼7 fold) also supported the activation of oxidative stress upon CuO NP treatment. Based on the changes in different metabolites induced by CuO NP exposure and previous studies from our laboratory, we propose that autophagy and oxidative stress could play a role in CuO NP-induced toxicity.more » « less
-
Copper (Cu) is an essential micronutrient required as a co-factor in the catalytic center of many enzymes. However, excess Cu can generate pleiotropic effects in the microbial cell. In addition, leaching of Cu from pipelines results in elevated Cu concentration in the environment, which is of public health concern. Sulfate-reducing bacteria (SRB) have been demonstrated to grow in toxic levels of Cu. However, reports on Cu toxicity towards SRB have primarily focused on the degree of toxicity and subsequent elimination. Here, Cu(II) stress-related effects on a model SRB, Desulfovibrio alaskensis G20, is reported. Cu(II) stress effects were assessed as alterations in the transcriptome through RNA-Seq at varying Cu(II) concentrations (5 µM and 15 µM). In the pairwise comparison of control vs. 5 µM Cu(II), 61.43% of genes were downregulated, and 38.57% were upregulated. In control vs. 15 µM Cu(II), 49.51% of genes were downregulated, and 50.5% were upregulated. The results indicated that the expression of inorganic ion transporters and translation machinery was massively modulated. Moreover, changes in the expression of critical biological processes such as DNA transcription and signal transduction were observed at high Cu(II) concentrations. These results will help us better understand the Cu(II) stress-response mechanism and provide avenues for future research.more » « less
-
Lithium intercalation compounds, such as the complex metal oxide, lithium nickel manganese cobalt oxide (LiNi x Mn y Co 1−x−y O 2 , herein referred to as NMC), have demonstrated their utility as energy storage materials. In response to recent concerns about the global supply of cobalt, industrially synthesized NMCs are shifting toward using NMC compositions with enriched nickel content. However, nickel is one of the more toxic components of NMC materials, meriting investigation of the toxicity of these materials on environmentally relevant organisms. Herein, the toxicity of both nanoscale and microscale Ni-enriched NMCs to the bacterium, Shewanella oneidensis MR-1, and the zooplankton, Daphnia magna , was assessed. Unexpectedly, for the bacteria, all NMC materials exhibited similar toxicity when used at equal surface area-based doses, despite the different nickel content in each. Material dissolution to toxic species, namely nickel and cobalt ions, was therefore modelled using a combined density functional theory and thermodynamics approach, which showed an increase in material stability due to the Ni-enriched material containing nickel with an oxidation state >2. The increased stability of this material means that similar dissolution is expected between Ni-enriched NMC and equistoichiometric NMC, which is what was found in experiments. For S. oneidensis , the toxicity of the released ions recapitulated toxicity of NMC nanoparticles. For D. magna , nickel enrichment increased the observed toxicity of NMC, but this toxicity was not due to ion release. Association of the NMC was observed with both S. oneidensis and D. magna. This work demonstrates that for organisms where the major mode of toxicity is based on ion release, including more nickel in NMC does not impact toxicity due to increased particle stability; however, for organisms where the core composition dictates the toxicity, including more nickel in the redesign strategy may lead to greater toxicity due to nanoparticle-specific impacts on the organism.more » « less
An official website of the United States government

