skip to main content


Title: Transcriptomics and Functional Analysis of Copper Stress Response in the Sulfate-Reducing Bacterium Desulfovibrio alaskensis G20
Copper (Cu) is an essential micronutrient required as a co-factor in the catalytic center of many enzymes. However, excess Cu can generate pleiotropic effects in the microbial cell. In addition, leaching of Cu from pipelines results in elevated Cu concentration in the environment, which is of public health concern. Sulfate-reducing bacteria (SRB) have been demonstrated to grow in toxic levels of Cu. However, reports on Cu toxicity towards SRB have primarily focused on the degree of toxicity and subsequent elimination. Here, Cu(II) stress-related effects on a model SRB, Desulfovibrio alaskensis G20, is reported. Cu(II) stress effects were assessed as alterations in the transcriptome through RNA-Seq at varying Cu(II) concentrations (5 µM and 15 µM). In the pairwise comparison of control vs. 5 µM Cu(II), 61.43% of genes were downregulated, and 38.57% were upregulated. In control vs. 15 µM Cu(II), 49.51% of genes were downregulated, and 50.5% were upregulated. The results indicated that the expression of inorganic ion transporters and translation machinery was massively modulated. Moreover, changes in the expression of critical biological processes such as DNA transcription and signal transduction were observed at high Cu(II) concentrations. These results will help us better understand the Cu(II) stress-response mechanism and provide avenues for future research.  more » « less
Award ID(s):
1849206 1736255
NSF-PAR ID:
10336126
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
23
Issue:
3
ISSN:
1422-0067
Page Range / eLocation ID:
1396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits—Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.

     
    more » « less
  2. The health benefits of switching from tobacco to electronic cigarettes (ECs) are neither confirmed nor well characterized. To address this problem, we used RNA-seq analysis to compare the nasal epithelium transcriptome from the following groups (n = 3 for each group): (1) former smokers who completely switched to second generation ECs for at least 6 months, (2) current tobacco cigarette smokers (CS), and (3) non-smokers (NS). Group three included one former cigarette smoker. The nasal epithelial biopsies from the EC users vs. NS had a higher number of differentially expressed genes (DEGs) than biopsies from the CS vs. NS and CS vs. EC sets (1817 DEGs total for the EC vs. NS, 407 DEGs for the CS vs. NS, and 116 DEGs for the CS vs. EC comparison). In the EC vs. NS comparison, enriched gene ontology terms for the downregulated DEGs included cilium assembly and organization, whereas gene ontologies for upregulated DEGs included immune response, keratinization, and NADPH oxidase. Similarly, ontologies for cilium movement were enriched in the downregulated DEGs for the CS vs. NS group. Reactome pathway analysis gave similar results and also identified keratinization and cornified envelope in the upregulated DEGs in the EC vs. NS comparison. In the CS vs. NS comparison, the enriched Reactome pathways for upregulated DEGs included biological oxidations and several metabolic processes. Regulator effects identified for the EC vs. NS comparison were inflammatory response, cell movement of phagocytes and degranulation of phagocytes. Disease Ontology Sematic Enrichment analysis identified lung disease, mouth disease, periodontal disease and pulmonary fibrosis in the EC vs. NS comparison. Squamous metaplasia associated markers, keratin 10, keratin 13 and involucrin, were increased in the EC vs. NS comparison. Our transcriptomic analysis showed that gene expression profiles associated with EC use are not equivalent to those from non-smokers. EC use may interfere with airway epithelium recovery by promoting increased oxidative stress, inhibition of ciliogenesis, and maintaining an inflammatory response. These transcriptomic alterations may contribute to the progression of diseases with chronic EC use. 
    more » « less
  3. Cockroaches are important global urban pests from aesthetic and health perspectives. Insecticides represent the most cost-effective way to control cockroaches and limit their impacts on human health. However, cockroaches readily develop insecticide resistance, which can quickly limit efficacy of even the newest and most effective insecticide products. The goal of this research was to understand whole-body physiological responses in German cockroaches, at the metatranscriptome level, to defined insecticide selection pressures. We used the insecticide indoxacarb as the selecting insecticide, which is an important bait active ingredient for cockroach control. Six generations of selection with indoxacarb bait produced a strain with substantial (>20×) resistance relative to inbred control lines originating from the same parental stock. Metatranscriptome sequencing revealed 1,123 significantly differentially expressed (DE) genes in ≥two of three statistical models (81 upregulated and 1,042 downregulated; FDR P < 0.001; log2FC of ±1). Upregulated DE genes represented many detoxification enzyme families including cytochrome-P450 oxidative enzymes, hydrolases and glutathione- S -transferases. Interestingly, the majority of downregulated DE genes were from microbial and viral origins, indicating that selection for resistance is also associated with elimination of commensal, pathogenic and/or parasitic microbes. These microbial impacts could result from: (i) direct effects of indoxacarb, (ii) indirect effects of antimicrobial preservatives included in the selecting bait matrix, or (iii) selection for general stress response mechanisms that confer both xenobiotic resistance and immunity. These results provide novel physiological insights into insecticide resistance evolution and mechanisms, as well as novel insights into parallel fitness benefits associated with selection for insecticide resistance. 
    more » « less
  4. null (Ed.)
    Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions. 
    more » « less
  5. Abstract

    Sex chromosomes frequently differ from the autosomes in the frequencies of genes with sexually dimorphic or tissue-specific expression. Multiple hypotheses have been put forth to explain the unique gene content of the X chromosome, including selection against male-beneficial X-linked alleles, expression limits imposed by the haploid dosage of the X in males, and interference by the dosage compensation complex on expression in males. Here, we investigate these hypotheses by examining differential gene expression in Drosophila melanogaster following several treatments that have widespread transcriptomic effects: bacterial infection, viral infection, and abiotic stress. We found that genes that are induced (upregulated) by these biotic and abiotic treatments are frequently under-represented on the X chromosome, but so are those that are repressed (downregulated) following treatment. We further show that whether a gene is bound by the dosage compensation complex in males can largely explain the paucity of both up- and downregulated genes on the X chromosome. Specifically, genes that are bound by the dosage compensation complex, or close to a dosage compensation complex high-affinity site, are unlikely to be up- or downregulated after treatment. This relationship, however, could partially be explained by a correlation between differential expression and breadth of expression across tissues. Nonetheless, our results suggest that dosage compensation complex binding, or the associated chromatin modifications, inhibit both up- and downregulation of X chromosome gene expression within specific contexts, including tissue-specific expression. We propose multiple possible mechanisms of action for the effect, including a role of Males absent on the first, a component of the dosage compensation complex, as a dampener of gene expression variance in both males and females. This effect could explain why the Drosophila X chromosome is depauperate in genes with tissue-specific or induced expression, while the mammalian X has an excess of genes with tissue-specific expression.

     
    more » « less