Megapixel single-photon avalanche diode (SPAD) arrays have been developed recently, opening up the possibility of deploying SPADs as generalpurpose passive cameras for photography and computer vision. However, most previous work on SPADs has been limited to monochrome imaging. We propose a computational photography technique that reconstructs high-quality color images from mosaicked binary frames captured by a SPAD array, even for high-dyanamic-range (HDR) scenes with complex and rapid motion. Inspired by conventional burst photography approaches, we design algorithms that jointly denoise and demosaick single-photon image sequences. Based on the observation that motion effectively increases the color sample rate, we design a blue-noise pseudorandom RGBW color filter array for SPADs, which is tailored for imaging dark, dynamic scenes. Results on simulated data, as well as real data captured with a fabricated color SPAD hardware prototype shows that the proposed method can reconstruct high-quality images with minimal color artifacts even for challenging low-light, HDR and fast-moving scenes. We hope that this paper, by adding color to computational single-photon imaging, spurs rapid adoption of SPADs for real-world passive imaging applications.
more »
« less
Photon-number-resolving segmented detectors based on single-photon avalanche-photodiodes
We investigate the feasibility and performance of photon-number-resolved photodetection employing single-photon avalanche photodiodes (SPADs) with low dark counts. While the main idea, to splitnphotons intomdetection modes with a vanishing probability of more than one photon per mode, is not new, we investigate here a important variant of this situation where SPADs are side-coupled to the same waveguide rather than terminally coupled to a propagation tree. This prevents the nonideal SPAD quantum efficiency from contributing to photon loss. We propose a concrete SPAD segmented waveguide detector based on a vertical directional coupler design, and characterize its performance by evaluating the purities of Positive-Operator-Valued Measures (POVMs) in terms of number of SPADs, photon loss, dark counts, and electrical cross-talk.
more »
« less
- PAR ID:
- 10132112
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 28
- Issue:
- 3
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 3660
- Size(s):
- Article No. 3660
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Single-photon avalanche diodes (SPADs) are a rapidly developing image sensing technology with extreme low-light sensitivity and picosecond timing resolution. These unique capabilities have enabled SPADs to be used in applications like LiDAR, non-line-of-sight imaging and fluorescence microscopy that require imaging in photon-starved scenarios. In this work we harness these capabilities for dealing with motion blur in a passive imaging setting in low illumination conditions. Our key insight is that the data captured by a SPAD array camera can be represented as a 3D spatio-temporal tensor of photon detection events which can be integrated along arbitrary spatio-temporal trajectories with dynamically varying integration windows, depending on scene motion. We propose an algorithm that estimates pixel motion from photon timestamp data and dynamically adapts the integration windows to minimize motion blur. Our simulation results show the applicability of this algorithm to a variety of motion profiles including translation, rotation and local object motion. We also demonstrate the real-world feasibility of our method on data captured using a 32x32 SPAD camera.more » « less
-
Osiński, Marek; Arakawa, Yasuhiko; Witzigmann, Bernd (Ed.)Superconducting nanostripe single-photon detectors (SNSPDs) represent key components in silicon quantum photonic integrated circuits (SiQuPICs). They provide good timing precision, low dark counts, and high efficiency. The design, fabrication, and characterization of SiQuPICs comprising SNSPDs coupled to dielectric optical waveguides are the core objectives of our work. The detectors are positioned directly on the dielectric waveguide core to increase photon absorption by the superconducting nanostripes. We also present results on the SPICE circuit modeling of traveling-wave SNSPDs integrated with Si3N4/SiO2 optical waveguides.more » « less
-
A<sc>bstract</sc> The presence of a plethora of light spin 0 and spin 1 fields is motivated in a number of BSM scenarios, such as the axiverse. The study of the interactions of such light bosonic fields with the Standard Model has focused mostly on interactions involving only one such field, such as the axion (ϕ) coupling to photons,$$\phi F\widetilde{F}$$, or the kinetic mixing between photon and the dark photon,FFD. In this work, we continue the exploration of interactions involving two light BSM fields and the standard model, focusing on the mixed axion-photon-dark-photon interaction$$\phi F{\widetilde{F}}_{D}$$. If either the axion or dark photon are dark matter, we show that this interaction leads to conversion of the CMB photons into a dark sector particle, leading to a distortion in the CMB spectrum. We present the details of these unique distortion signatures and the resulting constraints on the$$\phi F{\widetilde{F}}_{D}$$coupling. In particular, we find that for a wide range of masses, the constraints from these effect are stronger than on the more widely studied axion-photon coupling.more » « less
-
Single-photon avalanche diodes (SPADs) that are sensitive to photons in the Short-wave infrared and extended short-wave infrared (SWIR and eSWIR) spectra are important components for communication, ranging, and low-light level imaging. The high gain, low excess noise factor, and widely tunable bandgap of AlxIn1-xAsySb1-yavalanche photodiodes (APDs) make them a suitable candidate for these applications. In this work, we report single-photon-counting results for a separate absorption, charge, and multiplication (SACM) Geiger-mode SPAD within a gated-quenching circuit. The single-photon avalanche probabilities surpass 80% at 80 K, corresponding with single-photon detection efficiencies of 33% and 12% at 1.55 µm and 2 µm, respectively.more » « less
An official website of the United States government
