skip to main content


Title: AlInAsSb Geiger-mode SWIR and eSWIR SPADs with high avalanche probability

Single-photon avalanche diodes (SPADs) that are sensitive to photons in the Short-wave infrared and extended short-wave infrared (SWIR and eSWIR) spectra are important components for communication, ranging, and low-light level imaging. The high gain, low excess noise factor, and widely tunable bandgap of AlxIn1-xAsySb1-yavalanche photodiodes (APDs) make them a suitable candidate for these applications. In this work, we report single-photon-counting results for a separate absorption, charge, and multiplication (SACM) Geiger-mode SPAD within a gated-quenching circuit. The single-photon avalanche probabilities surpass 80% at 80 K, corresponding with single-photon detection efficiencies of 33% and 12% at 1.55 µm and 2 µm, respectively.

 
more » « less
NSF-PAR ID:
10484487
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
2
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 2106
Size(s):
["Article No. 2106"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Circular supply chains require more accurate product labeling and traceability. In the apparel industry, product life cycle management is hampered in part by inaccurate, poorly readable, and detachable standard care labels. Instead, this article seeks to enable a labeling system capable of being integrated into the fabric itself, intrinsically recyclable, low‐cost, encodes information, and allows rapid readout after years of normal use. In this work, all‐polymer photonic crystals are designed and then fabricated by thermal drawing with >100 layers having sub‐micrometer individual thickness and low refractive index contrast (Δn = 0.1). The fibers exhibit reflectance features in the 1–5.5 µm wavelength range, characterized using insitu Fourier transform infrared spectroscopy. Drawn photonic fibers are then woven into fabrics, characterized by near‐infrared spectroscopy and short‐wave infrared imaging, techniques commonly used in industrial facilities for sorting materials. The fibers’ optical design also enables the use of overtone peaks to avoid overlap with parasitic molecular absorption, substantially improving the signal‐to‐noise ratio (and therefore ease and speed) of readout. The ability to produce kilometers of fiber that are compatible with existing textile manufacturing processes, coupled with low input material cost, make these a potential market‐viable improvement over the standard care label.

     
    more » « less
  2. The effect of realistic atmospheric conditions on mid-IR (λ = 3.9 µm) and long-wave-IR (λ = 10 µm) laser-induced avalanche breakdown for the remote detection of radioactive material is examined experimentally and with propagation simulations. Our short-range in-lab mid-IR laser experiments show a correlation between increasing turbulence level and a reduced number of breakdown sites associated with a reduction in the portion of the focal volume above the breakdown threshold. Simulations of propagation through turbulence are in excellent agreement with these measurements and provide code validation. We then simulate propagation through realistic atmospheric turbulence over a long range (0.1–1 km) in the long-wave-IR regime (λ = 10 µm). The avalanche threshold focal volume is found to be robust even in the presence of strong turbulence, only dropping by ∼50% over a propagation length of ∼0.6 km. We also experimentally assess the impact of aerosols on avalanche-based detection, finding that, while background counts increase, a useful signal is extractable even at aerosol concentrations 105times greater than what is typically observed in atmospheric conditions. Our results show promise for the long-range detection of radioactive sources under realistic atmospheric conditions.

     
    more » « less
  3. Abstract

    The Wide-Field Infrared Transient Explorer (WINTER) is a new 1 deg2seeing-limited time-domain survey instrument designed for dedicated near-infrared follow-up of kilonovae from binary neutron star (BNS) and neutron star–black hole mergers. WINTER will observe in the near-infraredY,J, and short-Hbands (0.9–1.7μm, toJAB= 21 mag) on a dedicated 1 m telescope at Palomar Observatory. To date, most prompt kilonova follow-up has been in optical wavelengths; however, near-infrared emission fades more slowly and depends less on geometry and viewing angle than optical emission. We present an end-to-end simulation of a follow-up campaign during the fourth observing run (O4) of the LIGO, Virgo, and KAGRA interferometers, including simulating 625 BNS mergers, their detection in gravitational waves, low-latency and full parameter estimation skymaps, and a suite of kilonova lightcurves from two different model grids. We predict up to five new kilonovae independently discovered by WINTER during O4, given a realistic BNS merger rate. Using a larger grid of kilonova parameters, we find that kilonova emission is ≈2 times longer lived and red kilonovae are detected ≈1.5 times further in the infrared than in the optical. For 90% localization areas smaller than 150 (450) deg2, WINTER will be sensitive to more than 10% of the kilonova model grid out to 350 (200) Mpc. We develop a generalized toolkit to create an optimal BNS follow-up strategy with any electromagnetic telescope and present WINTER’s observing strategy with this framework. This toolkit, all simulated gravitational-wave events, and skymaps are made available for use by the community.

     
    more » « less
  4. Abstract

    Hyperspectral sensors, combining the functions of photon detection with ultrahigh spectral resolution in a single device, have emerged as a new class of devices with significant potential for applications that rely on the input of optical information. Despite continued advancement, the widespread use of infrared hyperspectral sensors is still limited primarily due to the high cost associated with the growth and processing of epitaxial semiconductors, such as HgCdTe, InSb, and superlattices. Here, it is shown that colloidal quantum dots (CQDs) provide a promising route toward low‐cost, compact, and sensitive infrared hyperspectral sensors with tunable sensing ranges. In total, 64 narrowband channels with full‐width at half‐maxima down to ≈30 cm−1can be realized by directly integrating CQDs sensors with a distributed Bragg mirror filter array. The results of high‐resolution spectra measurement with resolving power up to 180 and acquisition of a hyperspectral image cube in the short‐wave infrared range, benefitting from the fast (≈120 ns) and sensitive (>1010Jones) performance of the CQDs sensors, are experimentally demonstrated.

     
    more » « less
  5. Holland, Andrew D. ; Beletic, James (Ed.)
    The Wide-Field Infrared Transient Explorer (WINTER) is a new time-domain instrument which will perform a seeing-limited survey of the near-infrared sky. Deployed on a dedicated 1-meter robotic telescope at Palomar Observatory, WINTER is designed to study transients of particular interest in the near-infrared including kilo-novae from gravitational-wave sources, supernovae, tidal disruption events, and transiting exoplanets around low mass stars with surveys to a depth of J=21 magnitudes. WINTER's custom camera combines six commercial large-format Indium Gallium Arsenide (InGaAs) sensors, observing in Y, J, and a short-H (Hs) band filters (0.9-1.7 microns), and employs a novel tiled optical design to cover a >1 degree squared field of view with 90% fill factor. Each wide-format (1920 x 1080 pixels) InGaAs sensor operates at T = -50°C with a thermoelectric cooler, achieving background-limited photometry without cryogenic cooling. The tiled InGaAs sensors result in a wide field-of-view instrument with significant cost savings when compared to HgCdTe sensors. We present WINTER's novel readout scheme, which includes custom electronics, firmware, and software for low-noise, real-time readout of the InGaAs sensors, including up to a 30x speed up of data reduction using GPUs. This work also outlines the cooling design for warm (T = -50°C) operation of the sensors with a two-stage thermometric cooler, copper heat pipes, and liquid cooling. We conclude with updates on the alignment, integration, and test of the WINTER instrument with a projected first light in Fall 2022. 
    more » « less