skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AlInAsSb Geiger-mode SWIR and eSWIR SPADs with high avalanche probability
Single-photon avalanche diodes (SPADs) that are sensitive to photons in the Short-wave infrared and extended short-wave infrared (SWIR and eSWIR) spectra are important components for communication, ranging, and low-light level imaging. The high gain, low excess noise factor, and widely tunable bandgap of AlxIn1-xAsySb1-yavalanche photodiodes (APDs) make them a suitable candidate for these applications. In this work, we report single-photon-counting results for a separate absorption, charge, and multiplication (SACM) Geiger-mode SPAD within a gated-quenching circuit. The single-photon avalanche probabilities surpass 80% at 80 K, corresponding with single-photon detection efficiencies of 33% and 12% at 1.55 µm and 2 µm, respectively.  more » « less
Award ID(s):
1842641
PAR ID:
10484487
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
2
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 2106
Size(s):
Article No. 2106
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract GeSn photodetectors monolithically grown on Ge virtual substrates demonstrate mid‐wave infrared (MWIR) detection at room temperature. The lattice mismatch between GeSn and Ge causes dislocations and compressive strain, creating leakage pathways and unwanted indirect band transitions. Designed thin Ge0.91Sn0.09triple‐step buffer layers of ≈175 nm total thickness reduce dislocations and enable full relaxation, showing 100% lattice relaxation and smooth surface roughness of 0.83 nm with shorter auto‐correlation length in surface morphology compared to single‐step buffers. Ge1‐xSnxphotodetectors (x= 0.09, 0.12, and 0.15) on triple‐step buffers withn‐i‐pconfigurations achieve lattice strain relaxations of 99%, 88%, and 80%, respectively. Ge0.91Sn0.09and Ge0.88Sn0.12show gradual variation in auto‐correlation amplitude, while Ge0.85Sn0.15shows an increase due to lattice mismatch. Shockley–Read–Hall recombination current dominates at low reverse bias due to mismatch‐induced dislocations, while band‐to‐band tunneling current dominates at higher reverse bias due to narrowing bandgap under strong electric fields. The photodetectors show extended spectral response with increasing Sn composition ofi‐GeSn active layer sandwiched by barriers. Ge0.88Sn0.12and Ge0.85Sn0.15exhibit extended wavelength cut‐offs of 3.12 and 3.27 µm at room temperature, demonstrating significant potential for silicon‐based MWIR applications. 
    more » « less
  2. Abstract Source/Drain extension doping is crucial for minimizing the series resistance of the ungated channel and reducing the contact resistance of field‐effect transistors (FETs) in complementary metal–oxide–semiconductor (CMOS) technology. 2D semiconductors, such as MoS2and WSe2, are promising channel materials for beyond‐silicon CMOS. A key challenge is to achieve extension doping for 2D monolayer FETs without damaging the atomically thin material. This work demonstrates extension doping with low‐resistance contacts for monolayer WSe2p‐FETs. Self‐limiting oxidation transforms a bilayer WSe2into a hetero‐bilayer of a high‐work‐function WOxSeyon a monolayer WSe2. Then, damage‐free nanolithography defines an undoped nano‐channel, preserving the high on‐current of WOxSey‐doped FETs while significantly improving their on/off ratio. The insertion of an amorphous WOxSeyinterlayer under the contacts achieves record‐low contact resistances for monolayer WSe2over a hole density range of 1012to 1013cm−2(1.2 ± 0.3 kΩ µm at 1013cm−2). The WOxSey‐doped extension exhibits a sheet resistance as low as 10 ± 1 kΩ □−1. Monolayer WSe2p‐FETs with sub‐50 nm channel lengths reach a maximum drain current of 154 µA µm−1with an on/off ratio of 107–108. These results define strategies for nanometer‐scale selective‐area doping in 2D FETs and other 2D architectures. 
    more » « less
  3. The effect of realistic atmospheric conditions on mid-IR (λ = 3.9 µm) and long-wave-IR (λ = 10 µm) laser-induced avalanche breakdown for the remote detection of radioactive material is examined experimentally and with propagation simulations. Our short-range in-lab mid-IR laser experiments show a correlation between increasing turbulence level and a reduced number of breakdown sites associated with a reduction in the portion of the focal volume above the breakdown threshold. Simulations of propagation through turbulence are in excellent agreement with these measurements and provide code validation. We then simulate propagation through realistic atmospheric turbulence over a long range (0.1–1 km) in the long-wave-IR regime (λ = 10 µm). The avalanche threshold focal volume is found to be robust even in the presence of strong turbulence, only dropping by ∼50% over a propagation length of ∼0.6 km. We also experimentally assess the impact of aerosols on avalanche-based detection, finding that, while background counts increase, a useful signal is extractable even at aerosol concentrations 105times greater than what is typically observed in atmospheric conditions. Our results show promise for the long-range detection of radioactive sources under realistic atmospheric conditions. 
    more » « less
  4. Abstract One of the most common approaches for quenching single-photon avalanche diodes is to use a passive resistor in series with it. A drawback of this approach has been the limited recovery speed of the single-photon avalanche diodes. High resistance is needed to quench the avalanche, leading to slower recharging of the single-photon avalanche diodes depletion capacitor. We address this issue by replacing a fixed quenching resistor with a bias-dependent adaptive resistive switch. Reversible generation of metallic conduction enables switching between low and high resistance states under unipolar bias. As an example, using a Pt/Al 2 O 3 /Ag resistor with a commercial silicon single-photon avalanche diodes, we demonstrate avalanche pulse widths as small as ~30 ns, 10× smaller than a passively quenched approach, thus significantly improving the single-photon avalanche diodes frequency response. The experimental results are consistent with a model where the adaptive resistor dynamically changes its resistance during discharging and recharging the single-photon avalanche diodes. 
    more » « less
  5. A technique to transform the waveform of a 14.4 keV photon (time dependence of the photon detection probability or, equivalently, the intensity of the single-photon wave packet) into a regular sequence of short, nearly bandwidth-limited pulses with a controlled number of pulses is proposed. It is based on coherent forward scattering of single X-ray photons from a synchrotron Mössbauer source (SMS) in an optically thick, vibrating, recoilless 57Fe resonant absorber. The possibility of compressing the waveform of an SMS photon into a single short bell-shaped pulse is predicted. The experiment is proposed for compressing a 100 ns duration 14.4 keV single-photon wave packet produced by SMS at the European Synchrotron Radiation Facility (ESRF) into a single bell-shaped pulse of less than 20 ns duration and more than twice the peak intensity. Such single-photon coherent pulses are promising for applications in the fast-developing field of X-ray quantum optics, including possible implementation of quantum memory. 
    more » « less