skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exact sampling for some multi-dimensional queueing models with renewal input
Abstract Using a result of Blanchet and Wallwater (2015) for exactly simulating the maximum of a negative drift random walk queue endowed with independent and identically distributed (i.i.d.) increments, we extend it to a multi-dimensional setting and then we give a new algorithm for simulating exactly the stationary distribution of a first-in–first-out (FIFO) multi-server queue in which the arrival process is a general renewal process and the service times are i.i.d.: the FIFO GI/GI/ c queue with $$ 2 \leq c \lt \infty$$ . Our method utilizes dominated coupling from the past (DCFP) as well as the random assignment (RA) discipline, and complements the earlier work in which Poisson arrivals were assumed, such as the recent work of Connor and Kendall (2015). We also consider the models in continuous time, and show that with mild further assumptions, the exact simulation of those stationary distributions can also be achieved. We also give, using our FIFO algorithm, a new exact simulation algorithm for the stationary distribution of the infinite server case, the GI/GI/ $$\infty$$ model. Finally, we even show how to handle fork–join queues, in which each arriving customer brings c jobs, one for each server.  more » « less
Award ID(s):
1838576 1720451
PAR ID:
10132114
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in Applied Probability
Volume:
51
Issue:
4
ISSN:
0001-8678
Page Range / eLocation ID:
1179 to 1208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the first algorithm that samples max n ≥0 { S n − n α }, where S n is a mean zero random walk, and n α with $$\alpha \in ({1 \over 2},1)$$ defines a nonlinear boundary. We show that our algorithm has finite expected running time. We also apply this algorithm to construct the first exact simulation method for the steady-state departure process of a GI/GI/∞ queue where the service time distribution has infinite mean. 
    more » « less
  2. We describe a fluid model with time-varying input that approximates a multiclass many-server queue with general reneging distribution and multiple customer classes (specifically, the multiclass G/GI/N+GI queue). The system dynamics depend on the policy, which is a rule for determining when to serve a given customer class. The class of admissible control policies are those that are head-of-the-line (HL) and nonanticipating. For a sequence of many-server queues operating under admissible HL control policies and satisfying some mild asymptotic conditions, we establish a tightness result for the sequence of fluid scaled queue state descriptors and associated processes and show that limit points of such sequences are fluid model solutions almost surely. The tightness result together with the characterization of distributional limit points as fluid model solutions almost surely provides a foundation for the analysis of particular HL control policies of interest. We leverage these results to analyze a set of admissible HL control policies that we introduce, called weighted random buffer selection (WRBS), and an associated WRBS fluid model that allows multiple classes to be partially served in the fluid limit (which is in contrast to previously analyzed static priority policies). 
    more » « less
  3. We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution over the points. Each request has to be matched to a free server, with cost equal to the distance. The goal is to minimize the expected total cost of the matching. Such stochastic arrival models have been widely studied for the maximization variants of the online matching problem; however, the only known result for the minimization problem is a tight O(log n)-competitiveness for the random-order arrival model. This is in contrast with the adversarial model, where an optimal competitive ratio of O(log n) has long been conjectured and remains a tantalizing open question. In this paper, we show that the i.i.d model admits substantially better algorithms: our main result is an O((log log log n)^2)-competitive algorithm in this model, implying a strict separation between the i.i.d model and the adversarial and random order models. Along the way we give a 9-competitive algorithm for the line and tree metrics - the first O(1)-competitive algorithm for any non-trivial arrival model for these much-studied metrics. 
    more » « less
  4. The shortest-remaining-processing-time (SRPT) scheduling policy has been extensively studied, for more than 50 years, in single-server queues with infinitely patient jobs. Yet, much less is known about its performance in multiserver queues. In this paper, we present the first theoretical analysis of SRPT in multiserver queues with abandonment. In particular, we consider the M/GI/s+GI queue and demonstrate that, in the many-sever overloaded regime, performance in the SRPT queue is equivalent, asymptotically in steady state, to a preemptive two-class priority queue where customers with short service times (below a threshold) are served without wait, and customers with long service times (above a threshold) eventually abandon without service. We prove that the SRPT discipline maximizes, asymptotically, the system throughput, among all scheduling disciplines. We also compare the performance of the SRPT policy to blind policies and study the effects of the patience-time and service-time distributions. This paper was accepted by Baris Ata, stochastic models & simulation. 
    more » « less
  5. We study optimal pricing in a single server queue when the customers valuation of service depends on their waiting time. In particular, we consider a very general model, where the customer valuations are random and are sampled from a distribution that depends on the queue length. The goal of the service provider is to set dynamic state dependent prices in order to maximize its revenue, while also managing congestion. We model the problem as a Markov decision process and present structural results on the optimal policy. We also present an algorithm to find an approximate optimal policy. We further present a myopic policy that is easy to evaluate and present bounds on its performance. We finally illustrate the quality of our approximate solution and the myopic solution using numerical simulations. 
    more » « less