skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO 2 Reduction
Abstract

A gas‐phase approach to form Zn coordination sites on metal–organic frameworks (MOFs) by vapor‐phase infiltration (VPI) was developed. Compared to Zn sites synthesized by the solution‐phase method, VPI samples revealed approximately 2.8 % internal strain. Faradaic efficiency towards conversion of CO2to CO was enhanced by up to a factor of four, and the initial potential was positively shifted by 200–300 mV. Using element‐specific X‐ray absorption spectroscopy, the local coordination environment of the Zn center was determined to have square‐pyramidal geometry with four Zn−N bonds in the equatorial plane and one Zn‐OH2bond in the axial plane. The fine‐tuned internal strain was further supported by monitoring changes in XRD and UV/Visible absorption spectra across a range of infiltration cycles. The ability to use internal strain to increase catalytic activity of MOFs suggests that applying this strategy will enhance intrinsic catalytic capabilities of a variety of porous materials.

 
more » « less
Award ID(s):
1654140
NSF-PAR ID:
10132317
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
11
ISSN:
1433-7851
Page Range / eLocation ID:
p. 4572-4580
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A gas‐phase approach to form Zn coordination sites on metal–organic frameworks (MOFs) by vapor‐phase infiltration (VPI) was developed. Compared to Zn sites synthesized by the solution‐phase method, VPI samples revealed approximately 2.8 % internal strain. Faradaic efficiency towards conversion of CO2to CO was enhanced by up to a factor of four, and the initial potential was positively shifted by 200–300 mV. Using element‐specific X‐ray absorption spectroscopy, the local coordination environment of the Zn center was determined to have square‐pyramidal geometry with four Zn−N bonds in the equatorial plane and one Zn‐OH2bond in the axial plane. The fine‐tuned internal strain was further supported by monitoring changes in XRD and UV/Visible absorption spectra across a range of infiltration cycles. The ability to use internal strain to increase catalytic activity of MOFs suggests that applying this strategy will enhance intrinsic catalytic capabilities of a variety of porous materials.

     
    more » « less
  2. Abstract

    Metal–organic frameworks (MOFs) are promising materials for electrocatalysis; however, lack of electrical conductivity in the majority of existing MOFs limits their effective utilization in the field. Herein, an excellent catalytic activity of a 2D copper (Cu)‐based conductive MOF, copper tetrahydroxyquinone (CuTHQ), is reported for aqueous CO2reduction reaction (CO2RR) at low overpotentials. It is revealed that CuTHQ nanoflakes (NFs) with an average lateral size of 140 nm exhibit a negligible overpotential of 16 mV for the activation of this reaction, a high current density of ≈173 mA cm−2at −0.45 V versus RHE, an average Faradaic efficiency (F.E.) of ≈91% toward CO production, and a remarkable turnover frequency as high as ≈20.82 s−1. In the low overpotential range, the obtained CO formation current density is more than 35 and 25 times higher compared to state‐of‐the‐art MOF and MOF‐derived catalysts, respectively. The operando Cu K‐edge X‐ray absorption near edge spectroscopy and density functional theory calculations reveal the existence of reduced Cu (Cu+) during CO2RR which reversibly returns to Cu2+after the reaction. The outstanding CO2catalytic functionality of conductive MOFs (c‐MOFs) can open a way toward high‐energy‐density electrochemical systems.

     
    more » « less
  3. Abstract

    Atomically dispersed FeN4active sites have exhibited exceptional catalytic activity and selectivity for the electrochemical CO2reduction reaction (CO2RR) to CO. However, the understanding behind the intrinsic and morphological factors contributing to the catalytic properties of FeN4sites is still lacking. By using a Fe‐N‐C model catalyst derived from the ZIF‐8, we deconvoluted three key morphological and structural elements of FeN4sites, including particle sizes of catalysts, Fe content, and Fe−N bond structures. Their respective impacts on the CO2RR were comprehensively elucidated. Engineering the particle size and Fe doping is critical to control extrinsic morphological factors of FeN4sites for optimal porosity, electrochemically active surface areas, and the graphitization of the carbon support. In contrast, the intrinsic activity of FeN4sites was only tunable by varying thermal activation temperatures during the formation of FeN4sites, which impacted the length of the Fe−N bonds and the local strains. The structural evolution of Fe−N bonds was examined at the atomic level. First‐principles calculations further elucidated the origin of intrinsic activity improvement associated with the optimal local strain of the Fe−N bond.

     
    more » « less
  4. Abstract

    Atomically dispersed FeN4active sites have exhibited exceptional catalytic activity and selectivity for the electrochemical CO2reduction reaction (CO2RR) to CO. However, the understanding behind the intrinsic and morphological factors contributing to the catalytic properties of FeN4sites is still lacking. By using a Fe‐N‐C model catalyst derived from the ZIF‐8, we deconvoluted three key morphological and structural elements of FeN4sites, including particle sizes of catalysts, Fe content, and Fe−N bond structures. Their respective impacts on the CO2RR were comprehensively elucidated. Engineering the particle size and Fe doping is critical to control extrinsic morphological factors of FeN4sites for optimal porosity, electrochemically active surface areas, and the graphitization of the carbon support. In contrast, the intrinsic activity of FeN4sites was only tunable by varying thermal activation temperatures during the formation of FeN4sites, which impacted the length of the Fe−N bonds and the local strains. The structural evolution of Fe−N bonds was examined at the atomic level. First‐principles calculations further elucidated the origin of intrinsic activity improvement associated with the optimal local strain of the Fe−N bond.

     
    more » « less
  5. Abstract

    Many metal coordination compounds catalyze CO2electroreduction to CO, but cobalt phthalocyanine hybridized with conductive carbon such as carbon nanotubes is currently the only one that can generate methanol. The underlying structure–reactivity correlation and reaction mechanism desperately demand elucidation. Here we report the first in situ X‐ray absorption spectroscopy characterization, combined with ex situ spectroscopic and electrocatalytic measurements, to study CoPc‐catalyzed CO2reduction to methanol. Molecular dispersion of CoPc on CNT surfaces, as evidenced by the observed electronic interaction between the two, is crucial to fast electron transfer to the active sites and multi‐electron CO2reduction. CO, the key intermediate in the CO2‐to‐methanol pathway, is found to be labile on the active site, which necessitates a high local concentration in the microenvironment to compete with CO2for active sites and promote methanol production. A comparison of the electrocatalytic performance of structurally related porphyrins indicates that the bridging aza‐N atoms of the Pc macrocycle are critical components of the CoPc active site that produces methanol. In situ X‐ray absorption spectroscopy identifies the active site as Co(I) and supports an increasingly non‐centrosymmetric Co coordination environment at negative applied potential, likely due to the formation of a Co−CO adduct during the catalysis.

     
    more » « less