skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Engineering Atomically Dispersed FeN 4 Active Sites for CO 2 Electroreduction
Abstract Atomically dispersed FeN4active sites have exhibited exceptional catalytic activity and selectivity for the electrochemical CO2reduction reaction (CO2RR) to CO. However, the understanding behind the intrinsic and morphological factors contributing to the catalytic properties of FeN4sites is still lacking. By using a Fe‐N‐C model catalyst derived from the ZIF‐8, we deconvoluted three key morphological and structural elements of FeN4sites, including particle sizes of catalysts, Fe content, and Fe−N bond structures. Their respective impacts on the CO2RR were comprehensively elucidated. Engineering the particle size and Fe doping is critical to control extrinsic morphological factors of FeN4sites for optimal porosity, electrochemically active surface areas, and the graphitization of the carbon support. In contrast, the intrinsic activity of FeN4sites was only tunable by varying thermal activation temperatures during the formation of FeN4sites, which impacted the length of the Fe−N bonds and the local strains. The structural evolution of Fe−N bonds was examined at the atomic level. First‐principles calculations further elucidated the origin of intrinsic activity improvement associated with the optimal local strain of the Fe−N bond.  more » « less
Award ID(s):
1804326
PAR ID:
10255582
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
2
ISSN:
1433-7851
Page Range / eLocation ID:
p. 1022-1032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Carbon‐supported nitrogen‐coordinated single‐metal site catalysts (i.e., M−N−C, M: Fe, Co, or Ni) are active for the electrochemical CO2reduction reaction (CO2RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N−M bond structures and coordination is limited. Herein, we expand the coordination environments of M−N−C catalysts by designing dual‐metal active sites. The Ni‐Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N‐coordinated dual‐metal site configurations are 2N‐bridged (Fe‐Ni)N6, in which FeN4and NiN4moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual‐metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single‐metal sites (FeN4or NiN4) with improved intrinsic catalytic activity and selectivity. 
    more » « less
  2. Atomically dispersed and nitrogen-coordinated single Ni sites ( i.e. , NiN x moieties) embedded in partially graphitized carbon have emerged as effective catalysts for CO 2 electroreduction to CO. However, much mystery remains behind the extrinsic and intrinsic factors that govern the overall catalytic CO 2 electrolysis performance. Here, we designed a high-performance single Ni site catalyst through elucidating the structural evolution of NiN x sites during thermal activation and other critical external factors ( e.g. , carbon particle sizes and Ni content) by using Ni–N–C model catalysts derived from nitrogen-doped carbon carbonized from a zeolitic imidazolate framework (ZIF)-8. The N coordination, metal–N bond length, and thermal wrinkling of carbon planes in Ni–N–C catalysts significantly depend on thermal temperatures. Density functional theory (DFT) calculations reveal that the shortening Ni–N bonds in compressively strained NiN 4 sites could intrinsically enhance the CO 2 RR activity and selectivity of the Ni–N–C catalyst. Notably, the NiN 3 active sites with optimal local structures formed at higher temperatures ( e.g. , 1200 °C) are intrinsically more active and CO selective than NiN 4 , providing a new opportunity to design a highly active catalyst via populating NiN 3 sites with increased density. We also studied how morphological factors such as the carbon host particle size and Ni loading alter the final catalyst structure and performance. The implementation of this catalyst in an industrial flow-cell electrolyzer demonstrated an impressive performance for CO generation, achieving a current density of CO up to 726 mA cm −2 with faradaic efficiency of CO above 90%, representing one of the best catalysts for CO 2 reduction to CO. 
    more » « less
  3. Abstract FeN4moieties embedded in partially graphitized carbon are the most efficient platinum group metal free active sites for the oxygen reduction reaction in acidic proton‐exchange membrane fuel cells. However, their formation mechanisms have remained elusive for decades because the Fe−N bond formation process always convolutes with uncontrolled carbonization and nitrogen doping during high‐temperature treatment. Here, we elucidate the FeN4site formation mechanisms through hosting Fe ions into a nitrogen‐doped carbon followed by a controlled thermal activation. Among the studied hosts, the ZIF‐8‐derived nitrogen‐doped carbon is an ideal model with well‐defined nitrogen doping and porosity. This approach is able to deconvolute Fe−N bond formation from complex carbonization and nitrogen doping, which correlates Fe−N bond properties with the activity and stability of FeN4sites as a function of the thermal activation temperature. 
    more » « less
  4. Abstract We elucidate the structural evolution of CoN4sites during thermal activation by developing a zeolitic imidazolate framework (ZIF)‐8‐derived carbon host as an ideal model for Co2+ion adsorption. Subsequent in situ X‐ray absorption spectroscopy analysis can dynamically track the conversion from inactive Co−OH and Co−O species into active CoN4sites. The critical transition occurs at 700 °C and becomes optimal at 900 °C, generating the highest intrinsic activity and four‐electron selectivity for the oxygen reduction reaction (ORR). DFT calculations elucidate that the ORR is kinetically favored by the thermal‐induced compressive strain of Co−N bonds in CoN4active sites formed at 900 °C. Further, we developed a two‐step (i.e., Co ion doping and adsorption) Co‐N‐C catalyst with increased CoN4site density and optimized porosity for mass transport, and demonstrated its outstanding fuel cell performance and durability. 
    more » « less
  5. Abstract Sn‐based materials are identified as promising catalysts for the CO2electroreduction (CO2RR) to formate (HCOO). However, their insufficient selectivity and activity remain grand challenges. A new type of SnO2nanosheet with simultaneous N dopants and oxygen vacancies (VO‐rich N‐SnO2NS) for promoting CO2conversion to HCOOis reported. Due to the likely synergistic effect of N dopant andVO, theVO‐rich N‐SnO2NS exhibits high catalytic selectivity featured by an HCOOFaradaic efficiency (FE) of 83% at−0.9 V and an FE of>90% for all C1 products (HCOOand CO) at a wide potential range from −0.9 to−1.2 V. Low coordination Sn–N moieties are the active sites with optimal electronic and geometric structures regulated byVOand N dopants. Theoretical calculations elucidate that the reaction free energy of HCOO* protonation is decreased on theVO‐rich N‐SnO2NS, thus enhancing HCOOselectivity. The weakened H* adsorption energy also inhibits the hydrogen evolution reaction, a dominant side reaction during the CO2RR. Furthermore, using the catalyst as the cathode, a spontaneous Galvanic Zn‐CO2cell and a solar‐powered electrolysis process successfully demonstrated the efficient HCOOgeneration through CO2conversion and storage. 
    more » « less