skip to main content

Title: Pharyngeal Jaws Converge by Similar Means, Not to Similar Ends, When Minnows (Cypriniformes: Leuciscidae) Adapt to New Dietary Niches
Abstract Convergent evolution is at the forefront of many form-function studies. There are many examples of multiple independent lineages evolving a similar morphology in response to similar functional demands, providing a framework for testing hypotheses of form-function evolution. However, there are numerous clades with underappreciated convergence, in which there is a perceived homogeneity in morphology. In these groups, it can be difficult to investigate causal relationships of form and function (e.g., diet influencing the evolution of jaw morphology) without the ability to disentangle phylogenetic signal from convergence. Leuciscids (Cypriniformes: Leuciscidae; formerly nested within Cyprinidae) are a species-rich clade of fishes that have diversified to occupy nearly every freshwater trophic niche, yet are considered to have relatively low morphological diversity relative to other large freshwater clades. Within the North American leuciscids, many genera contain at least one herbivore, insectivore, and larvaphage. We created 3D models from micro-computed tomography scans of 165 leuciscid species to measure functionally relevant traits within the pharyngeal jaws of these fishes. Using a published phylogeny, we tested these metrics for evolutionary integration, phylogenetic signal, and correlation with diet. Measurements of the pharyngeal jaws, muscle attachment areas, and teeth showed strong positive evolutionary correlation with each other and more » negative evolutionary correlation with measurements of the inter-ceratobranchial ligament (ICB ligament). Using diet data from published literature, we found extensive dietary convergence within Leuciscidae. The most common transitions we found were between herbivorous and invertivorous taxa and between insectivore types (aquatic vs. terrestrial). We document a trade-off in which herbivorous leuciscids have large teeth, short ICB ligaments, and large muscle attachment areas, whereas insectivorous leuciscids showed the opposite pattern. Inverse patterns of morphological integration between the ICB ligament the rest of the pharyngeal jaw correspond this dietary trade-off, which indicates that coordinated evolution of morphological traits contributes to functional diversity in this clade. However, these patterns only emerge in the context of phylogeny, meaning that the pharyngeal jaws of North American leuciscids converge by similar means (structural changes in response to dietary demands), but not necessarily to similar ends (absolute phenotype). « less
Authors:
; ; ;
Award ID(s):
1832822 1712015
Publication Date:
NSF-PAR ID:
10132327
Journal Name:
Integrative and Comparative Biology
Volume:
59
Issue:
2
Page Range or eLocation-ID:
432 to 442
ISSN:
1540-7063
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Suction feeding and gill ventilation in teleosts are functionally coupled, meaning that there is an overlap in the structures involved with both functions. Functional coupling is one type of morphological integration, a term that broadly refers to any covariation, correlation, or coordination among structures. Suction feeding and gill ventilation exhibit other types of morphological integration, including functional coordination (a tendency of structures to work together to perform a function) and evolutionary integration (a tendency of structures to covary in size or shape across evolutionary history). Functional coupling, functional coordination, and evolutionary integration have each been proposed to limit morphological diversification to some extent. Yet teleosts show extraordinary cranial diversity, suggesting that there are mechanisms within some teleost clades that promote morphological diversification, even within the highly integrated suction feeding and gill ventilatory systems. To investigate this, we quantified evolutionary integration among four mechanical units associated with suction feeding and gill ventilation in a diverse clade of benthic, primarily suction-feeding fishes (Cottoidei; sculpins and relatives). We reconstructed cottoid phylogeny using molecular data from 108 species, and obtained 24 linear measurements of four mechanical units (jaws, hyoid, opercular bones, and branchiostegal rays) from micro-CT reconstructions of 44 cottoids and 1 outgroupmore »taxon. We tested for evolutionary correlation and covariation among the four mechanical units using phylogenetically corrected principal component analysis to reduce the dimensionality of measurements for each unit, followed by correlating phylogenetically independent contrasts and computing phylogenetic generalized least squares models from the first principle component axis of each of the four mechanical units. The jaws, opercular bones, and branchiostegal rays show evolutionary integration, but the hyoid is not positively integrated with these units. To examine these results in an ecomorphological context, we used published ecological data in phylogenetic ANOVA models to demonstrate that the jaw is larger in fishes that eat elusive or grasping prey (e.g., prey that can easily escape or cling to the substrate) and that the hyoid is smaller in intertidal and hypoxia-tolerant sculpins. Within Cottoidei, the relatively independent evolution of the hyoid likely has reduced limitations on morphological evolution within the highly morphologically integrated suction feeding and gill ventilatory systems.

    « less
  2. Abstract The ability of organisms to cross ecosystem boundaries is an important catalyst of evolutionary diversification. The genus Poecilia (mollies and guppies) is an excellent system for studying ecosystem transitions because species display a range of salinity and dietary preferences, with herbivory concentrated in the subgenus Mollienesia. We reconstructed ancestral habitats and diets across a phylogeny of the genus Poecilia, evaluated diversification rates and used phylogenetically independent contrasts to determine whether diet evolved in response to habitat transition in this group. The results suggest that ancestors of subgenus Mollienesia were exclusively herbivorous, whereas ancestral diets of other Poecilia included animals. We found that transitions across euryhaline boundaries occurred at least once in this group, probably after the divergence of the subgenus Mollienesia. Furthermore, increased salinity affiliation explained 24% of the decrease in animals in the gut, and jaw morphology was associated with the percentage of animals in the gut, but not with the percentage of species occupying saline habitats. These findings suggest that in the genus Poecilia, herbivory evolved in association with transitions from fresh to euryhaline habitats, and jaw morphology evolved in response to the appearance of herbivory. These results provide a rare example of increased diet diversification associatedmore »with the transition from freshwater to euryhaline habitats.« less
  3. Synopsis Evolutionary transitions between habitats have been catalysts for some of the most stunning examples of adaptive diversification, with novel niches and new resources providing ecological opportunity for such radiations. In aquatic animals, transitions from saltwater to freshwater habitats are rare, but occur often enough that in the Neotropics for example, marine-derived fishes contribute noticeably to regional ichthyofaunal diversity. Here, we investigate how morphology has evolved in a group of temperate fishes that contain a marine to freshwater transition: the sculpins (Percomorpha; Cottoidea). We devised a novel method for classifying dietary niche and relating functional aspects of prey to their predators. Coupled with functional measurements of the jaw apparatus in cottoids, we explored whether freshwater sculpins have fundamentally changed their niche after invading freshwater (niche lability) or if they retain a niche similar to their marine cousins (niche conservatism). Freshwater sculpins exhibit both phylogeographical and ecological signals of phylogenetic niche conservatism, meaning that regardless of habitat, sculpins fill similar niche roles in either saltwater or freshwater. Rather than competition guiding niche conservatism in freshwater cottoids, we argue that strong intrinsic constraints on morphological and ecological evolution are at play, contra to other studies of diversification in marine-derived freshwater fishes. However,more »several intertidal and subtidal sculpins as well as several pelagic freshwater species from Lake Baikal show remarkable departures from the typical sculpin bauplan. Our method of prey categorization provides an explicit, quantitative means of classifying dietary niche for macroevolutionary studies, rather than relying on somewhat arbitrary means used in previous literature.« less
  4. Abstract

    Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent “parts”, but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies—structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies. Here, we assess whether evolutionary patterns can explain the proximity of ontology-annotated characters within an ontology. To do so, we measure phylogenetic information across characters and evaluate if it matches the hierarchical structure given by ontological knowledge—in much the same way as across-species diversity structure is given by phylogeny. We implement an approach to evaluate the Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among ontology-annotated anatomical data subsets. We applied this to data sets representing two disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we find that BPI is not substantially explained by anatomy since dissonance is often high among morphologically related anatomical entities.more »For fishes, we find substantial information for two clusters of anatomical entities instantiating concepts from the jaws and branchial arch bones, but among-subset information decreases and dissonance increases substantially moving to higher-level subsets in the ontology. We further applied our approach to address particular evolutionary hypotheses with an example of morphological evolution in miniature fishes. While we show that phylogenetic information does match ontology structure for some anatomical entities, additional relationships and processes, such as convergence, likely play a substantial role in explaining BPI and dissonance, and merit future investigation. Our work demonstrates how complex morphological data sets can be interrogated with ontologies by allowing one to access how information is spread hierarchically across anatomical concepts, how congruent this information is, and what sorts of processes may play a role in explaining it: phylogeny, development, or convergence. [Apidae; Bayesian phylogenetic information; Ostariophysi; Phenoscape; phylogenetic dissonance; semantic similarity.]

    « less
  5. The fish clade Pelagiaria, which includes tunas as its most famous members, evolved remarkable morphological and ecological variety in a setting not generally considered conducive to diversification: the open ocean. Relationships within Pelagiaria have proven elusive due to short internodes subtending major lineages suggestive of rapid early divergences. Using a novel sequence dataset of over 1000 ultraconserved DNA elements (UCEs) for 94 of the 286 species of Pelagiaria (more than 70% of genera), we provide a time-calibrated phylogeny for this widely distributed clade. Some inferred relationships have clear precedents (e.g. the monophyly of ‘core’ Stromateoidei, and a clade comprising ‘Gempylidae’ and Trichiuridae), but others are unexpected despite strong support (e.g. Chiasmodontidae + Tetragonurus ). Relaxed molecular clock analysis using node-based fossil calibrations estimates a latest Cretaceous origin for Pelagiaria, with crown-group families restricted to the Cenozoic. Estimated mean speciation rates decline from the origin of the group in the latest Cretaceous, although credible intervals for root and tip rates are broad and overlap in most cases, and there is higher-than-expected partitioning of body shape diversity (measured as fineness ratio) between clades concentrated during the Palaeocene–Eocene. By contrast, more direct measures of ecology show either no substantial deviation from a nullmore »model of diversification (diet) or patterns consistent with evolutionary constraint or high rates of recent change (depth habitat). Collectively, these results indicate a mosaic model of diversification. Pelagiarians show high morphological disparity and modest species richness compared to better-studied fish radiations in contrasting environments. However, this pattern is also apparent in other clades in open-ocean or deep-sea habitats, and suggests that comparative study of such groups might provide a more inclusive model of the evolution of diversity in fishes.« less