skip to main content


Search for: All records

Award ID contains: 1712015

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Durophagous predators consume hard‐shelled prey such as bivalves, gastropods, and large crustaceans, typically by crushing the mineralized exoskeleton. This is costly from the point of view of the bite forces involved, handling times, and the stresses inflicted on the predator's skeleton. It is not uncommon for durophagous taxa to display an ontogenetic shift from softer to harder prey items, implying that it is relatively difficult for smaller animals to consume shelled prey. Batoid fishes (rays, skates, sawfishes, and guitarfishes) have independently evolved durophagy multiple times, despite the challenges associated with crushing prey harder than their own cartilaginous skeleton.Potamotrygon leopoldiis a durophagous freshwater ray endemic to the Xingu River in Brazil, with a jaw morphology superficially similar to its distant durophagous marine relatives, eagle rays (e.g.,Aetomylaeus, Aetobatus). We used second moment of area as a proxy for the ability to resist bending and analyzed the arrangement of the mineralized skeleton of the jaw ofP. leopoldiover ontogeny using data from computed tomography (CT) scans. The jaws ofP. leopoldido not resist bending nearly as well as other durophagous elasmobranchs, and the jaws are stiffest nearest the joints rather than beneath the dentition. While second moment has similar material distribution over ontogeny, mineralization of the jaws under the teeth increases with age. Neonate rays have low jaw stiffness and poor mineralization, suggesting thatP. leopoldimay not feed on hard‐shelled prey early in life. These differences in the shape, stiffness and mineralization of the jaws ofP. leopoldicompared to its durophagous relatives show there are several solutions to the problem of crushing shelled prey with a compliant skeleton.

     
    more » « less
  2. Abstract Convergent evolution is at the forefront of many form-function studies. There are many examples of multiple independent lineages evolving a similar morphology in response to similar functional demands, providing a framework for testing hypotheses of form-function evolution. However, there are numerous clades with underappreciated convergence, in which there is a perceived homogeneity in morphology. In these groups, it can be difficult to investigate causal relationships of form and function (e.g., diet influencing the evolution of jaw morphology) without the ability to disentangle phylogenetic signal from convergence. Leuciscids (Cypriniformes: Leuciscidae; formerly nested within Cyprinidae) are a species-rich clade of fishes that have diversified to occupy nearly every freshwater trophic niche, yet are considered to have relatively low morphological diversity relative to other large freshwater clades. Within the North American leuciscids, many genera contain at least one herbivore, insectivore, and larvaphage. We created 3D models from micro-computed tomography scans of 165 leuciscid species to measure functionally relevant traits within the pharyngeal jaws of these fishes. Using a published phylogeny, we tested these metrics for evolutionary integration, phylogenetic signal, and correlation with diet. Measurements of the pharyngeal jaws, muscle attachment areas, and teeth showed strong positive evolutionary correlation with each other and negative evolutionary correlation with measurements of the inter-ceratobranchial ligament (ICB ligament). Using diet data from published literature, we found extensive dietary convergence within Leuciscidae. The most common transitions we found were between herbivorous and invertivorous taxa and between insectivore types (aquatic vs. terrestrial). We document a trade-off in which herbivorous leuciscids have large teeth, short ICB ligaments, and large muscle attachment areas, whereas insectivorous leuciscids showed the opposite pattern. Inverse patterns of morphological integration between the ICB ligament the rest of the pharyngeal jaw correspond this dietary trade-off, which indicates that coordinated evolution of morphological traits contributes to functional diversity in this clade. However, these patterns only emerge in the context of phylogeny, meaning that the pharyngeal jaws of North American leuciscids converge by similar means (structural changes in response to dietary demands), but not necessarily to similar ends (absolute phenotype). 
    more » « less
  3. Synopsis Evolutionary transitions between habitats have been catalysts for some of the most stunning examples of adaptive diversification, with novel niches and new resources providing ecological opportunity for such radiations. In aquatic animals, transitions from saltwater to freshwater habitats are rare, but occur often enough that in the Neotropics for example, marine-derived fishes contribute noticeably to regional ichthyofaunal diversity. Here, we investigate how morphology has evolved in a group of temperate fishes that contain a marine to freshwater transition: the sculpins (Percomorpha; Cottoidea). We devised a novel method for classifying dietary niche and relating functional aspects of prey to their predators. Coupled with functional measurements of the jaw apparatus in cottoids, we explored whether freshwater sculpins have fundamentally changed their niche after invading freshwater (niche lability) or if they retain a niche similar to their marine cousins (niche conservatism). Freshwater sculpins exhibit both phylogeographical and ecological signals of phylogenetic niche conservatism, meaning that regardless of habitat, sculpins fill similar niche roles in either saltwater or freshwater. Rather than competition guiding niche conservatism in freshwater cottoids, we argue that strong intrinsic constraints on morphological and ecological evolution are at play, contra to other studies of diversification in marine-derived freshwater fishes. However, several intertidal and subtidal sculpins as well as several pelagic freshwater species from Lake Baikal show remarkable departures from the typical sculpin bauplan. Our method of prey categorization provides an explicit, quantitative means of classifying dietary niche for macroevolutionary studies, rather than relying on somewhat arbitrary means used in previous literature. 
    more » « less
  4. The serrasalmids: piranhas, pacus, and their relatives, are ubiquitous Neotropical fishes with diverse diets, ecologies, and behaviors. Serrasalmids have a bony, serrated keel which lines the underbellies of these fishes, the structure for which the family is named. We examined the diversity and structure of the keel in piranhas and allies using micro-computed tomography scanning in over 30 species of serrasalmids, a third of the species richness for the family, and for 95 total characiform specimens. The keel is highly diverse across serrasalmids, with serrae shape dictating the overall form of the keel. Serrae shape varies considerably among different species and even within keels themselves. The keel morphology can be divided into distinct anterior and posterior regions, as separated by the pelvic fins. Compared to other characiform fishes, serrasalmid skeletons are frequently damaged. Gouging perforations and signs of healing (serrae fusion) are common on the keel. We propose the keel is a defensive structure based on the high incidence of injury (>50%) in our dataset. This is the highest incidence of damage ever recorded in the skeletons of bony fishes. The loss of the anterior keel region in rheophilic taxa suggests competing performance demands and selective pressures on this structure. Competition and aggression among conspecifics or confamilials is a frequently invoked phenomenon for explaining animal weaponry and armor in terrestrial vertebrates. The keel in serrasalmids and other instances of armor in fishes could be complementary study systems for examining competitive rivalry in vertebrates. 
    more » « less
  5. Although rare within the context of 30 000 species of extant fishes, scale-feeding as an ecological strategy has evolved repeatedly across the teleost tree of life. Scalefeeding (lepidophagous) fishes are diverse in terms of their ecology, behaviour, and specialized morphologies for grazing on scales and mucus of sympatric species. Despite this diversity, the underlying ontogenetic changes in functional and biomechanical properties of associated feeding morphologies in lepidophagous fishes are less understood. We examined the ontogeny of feeding mechanics in two evolutionary lineages of scale-feeding fishes: Roeboides, a characin, and Catoprion, a piranha. We compare these two scale-feeding taxa with their nearest, non-lepidophagous taxa to identify traits held in common among scale-feeding fishes. We use a combination of micro-computed tomography scanning and iodine staining to measure biomechanical predictors of feeding behaviour such as tooth shape, jaw lever mechanics and jaw musculature. We recover a stark contrast between the feeding morphology of scale-feeding and non-scale-feeding taxa, with lepidophagous fishes displaying some paedomorphic characters through to adulthood. Few traits are shared between lepidophagous characins and piranhas, except for their highly-modified, stout dentition. Given such variability in development, morphology and behaviour, ecological diversity within lepidophagous fishes has been underestimated. 
    more » « less