Children are being presented with augmented reality (AR) in different contexts, such as education and gaming. However, little is known about how children conceptualize AR, especially AR headsets. Prior work has shown that children's interaction behaviors and expectations of technological devices can be quite different from adults’. It is important to understand children's mental models of AR headsets to design more effective experiences for them. To elicit children's perceptions, we conducted four participatory design sessions with ten children on designing content for imaginary AR headsets. We found that children expect AR systems to be highly intelligent and to recognize and virtually transform surroundings to create immersive environments. Also, children are in favor of using these devices for difficult tasks but prefer to work on their own for easy tasks. Our work contributes new understanding on how children comprehend AR headsets and provides recommendations for designing future headsets for children.
more »
« less
PrototypAR: Prototyping and Simulating Complex Systems with Paper Craft and Augmented Reality
We introduce PrototypAR, an Augmented Reality (AR) system that allows children to rapidly build complex systems using paper crafts and to test their designs in a digital environment. PrototypAR combines lo-fidelity prototyping to facilitate iterative design, real-time AR feedback to scaffold learning, and a virtual simulation environment to support personalized experiments. Informed by three participatory design sessions, we developed three PrototypAR applications: build-a-bike, build-a-camera, and build-an-aquarium---each highlights different aspects of our system. To evaluate PrototypAR, we conducted four single-session qualitative evaluations with 21 children working in teams. Our findings show how children build and explore complex systems models, how they use AR scaffolds, and the challenges they face when conducting experiments with their own prototypes.
more »
« less
- Award ID(s):
- 1834629
- PAR ID:
- 10132372
- Date Published:
- Journal Name:
- Proceedings of the 18th ACM International Conference on Interaction Design and Children
- Page Range / eLocation ID:
- 253 to 266
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modeling from the perspectives of software engineering and systems engineering have co-evolved over the last two decades as orthogonal approaches. Given the central role of software in modern cyber-physical systems and the increasing adoption of digital engineering practices in complex systems design, there is now significant opportunity for collaborative design among system users, software developers, and systems engineers. Model-based systems engineering (MBSE) and systems modeling languages can support seamless cross-domain connectivity for design, simulation, and analysis of emerging technologies such as Augmented Reality (AR). This paper presents a co-design process for extending the capability of an existing AR application referred to as a No-Code AR Systems (NCARS) framework. NCARS enables content developed by multi-domain authors to be deployed on AR devices through a software layer that bridges the content to the game engine that drives the AR system. Utilizing a software dependency diagram of the AR Annotation function, an existing MBSE model of the AR system is extended to include the structure and behavior of relevant software components. This allows a modular design of the system to address needs in integrating new requirements into the existing application. New user requirements for tracking items in motion in the user’s physical environment with virtual annotations in the augmented space are collaboratively designed and visualized through use case, block definition, internal block, and sequence diagrams. They capture the required structure and behavior of the proposed to-be system.more » « less
-
Locating RFID-tagged items in the environment and guiding humans to retrieve the tagged items is an important problem in the RFID community. This paper explores how to exploit synergies between Augmented Reality (AR) headsets and RFID localization to help solve this problem by improving both user experience and localization accuracy. Using fundamental mathematical formulations for RFID localization, we derive confidence metrics and display guidance to the user to improve their experience and enable them to retrieve items faster. We build our primitives into an end - to-end system, RF - AR, and show that it achieves 8.6 cm median localization accuracy within 76 seconds and enables 55% faster retrieval than state-of-the-art past systems. Our results demonstrate that AR-based “human-in-the-loop” designs can make the localization task more accurate and efficient, and thus holds the potential to improve processes where items need to be retrieved quickly, such as in manufacturing, retail, and warehousing.more » « less
-
Augmented reality (AR) headsets are being utilized in different task-based domains (e.g., healthcare, education) for both adults and children. However, prior work has mainly examined the applicability of AR headsets instead of how to design the visual information being displayed. It is essential to study how visual information should be presented in AR headsets to maximize task performance for both adults and children. Therefore, we conducted two studies (adults vs. children) analyzing distinct design combinations of critical and secondary textual information during a procedural assembly task. We found that while the design of information did not affect adults' task performance, the location of information had a direct effect on children's task performance. Our work contributes new understanding on how to design textual information in AR headsets to aid in adults’ and children's task performance. In addition, we identify specific differences on how to design textual information between adults and children.more » « less
-
Augmented reality (AR) interfaces increasingly utilize artificial intelligence systems to tailor content and experiences to the user. We explore the effects of one such system — a recommender system for online shopping — which allows customers to view personalized product recommendations in the physical spaces where they might be used. We describe results of a [Formula: see text] condition exploratory study in which recommendation quality was varied across three user interface types. Our results highlight potential differences in user perception of the recommended objects in an AR environment. Specifically, users rate product recommendations significantly higher in AR and in a 3D browser interface, and show a significant increase in trust in the recommender system, compared to a web interface with 2D product images. Through semi-structured interviews, we gather participant feedback which suggests AR interfaces perform better due to their ability to view products within the physical context where they will be used.more » « less