Single-objective optimization algorithms search for the single highest quality solution with respect to an objective. Quality diversity (QD) optimization algorithms, such as Covariance Matrix Adaptation MAP-Elites (CMA-ME), search for a collection of solutions that are both high quality with respect to an objective and diverse with respect to specified measure functions. However, CMA-ME suffers from three major limitations highlighted by the QD community: prematurely abandoning the objective in favor of exploration, struggling to explore flat objectives, and having poor performance for low-resolution archives. We propose a new QD algorithm, CMA MAP-Annealing (CMA-MAE), and its differentiable QD variant, CMA-MAE via a Gradient Arborescence (CMA-MAEGA), that address all three limitations. We provide theoretical justifications for the new algorithm with respect to each limitation. Our theory informs our experiments, which support the theory and show that CMA-MAE achieves state-of-the-art performance and robustness on standard QD benchmark and reinforcement learning domains.
more »
« less
Procedural Content Generation through Quality Diversity
Quality-diversity (QD) algorithms search for a set of good solutions which cover a space as defined by behavior metrics. This simultaneous focus on quality and diversity with explicit metrics sets QD algorithms apart from standard single- and multi-objective evolutionary algorithms, as well as from diversity preservation approaches such as niching. These properties open up new avenues for artificial intelligence in games, in particular for procedural content generation. Creating multiple systematically varying solutions allows new approaches to creative human-AI interaction as well as adaptivity. In the last few years, a handful of applications of QD to procedural content generation and game playing have been proposed; we discuss these and propose challenges for future work.
more »
« less
- Award ID(s):
- 1717324
- PAR ID:
- 10132574
- Date Published:
- Journal Name:
- 2019 IEEE Conference on Games (CoG)
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The procedural generation of levels and content in video games is a challenging AI problem. Often such generation relies on an intelligent way of evaluating the content being generated so that constraints are satisfied and/or objectives maximized. In this work, we address the problem of creating levels that are not only playable but also revolve around specific mechanics in the game. We use constrained evolutionary algorithms and quality-diversity algorithms to generate small sections of Super Mario Bros levels called scenes, using three different simulation approaches: Limited Agents, Punishing Model, and Mechanics Dimensions. All three approaches are able to create scenes that give opportunity for a player to encounter or use targeted mechanics with different properties. We conclude by discussing the advantages and disadvantages of each approach and compare them to each other.more » « less
-
Abstract This work presents a deep reinforcement learning (DRL) approach for procedural content generation (PCG) to automatically generate three-dimensional (3D) virtual environments that users can interact with. The primary objective of PCG methods is to algorithmically generate new content in order to improve user experience. Researchers have started exploring the use of machine learning (ML) methods to generate content. However, these approaches frequently implement supervised ML algorithms that require initial datasets to train their generative models. In contrast, RL algorithms do not require training data to be collected a priori since they take advantage of simulation to train their models. Considering the advantages of RL algorithms, this work presents a method that generates new 3D virtual environments by training an RL agent using a 3D simulation platform. This work extends the authors’ previous work and presents the results of a case study that supports the capability of the proposed method to generate new 3D virtual environments. The ability to automatically generate new content has the potential to maintain users’ engagement in a wide variety of applications such as virtual reality applications for education and training, and engineering conceptual design.more » « less
-
This work presents a Procedural Content Generation (PCG) method based on a Neural Network Reinforcement Learning (RL) approach that generates new environments for Virtual Reality (VR) learning applications. The primary objective of PCG methods is to algorithmically generate new content (e.g., environments, levels) in order to improve user experience. Researchers have started exploring the integration of Machine Learning (ML) algorithms into their PCG methods. These ML approaches help explore the design space and generate new content more efficiently. The capability to provide users with new content has great potential for learning applications. However, these ML algorithms require large datasets to train their generative models. In contrast, RL based methods do not require any training data to be collected a priori since they take advantage of simulation to train their models. Moreover, even though VR has become an emerging technology to engage users, there have been few studies that explore PCG for learning purposes and fewer in the context of VR. Considering these limitations, this work presents a method that generates new VR environments by training an RL in a simulation platform. This PCG method has the potential to maintain users’ engagement over time by presenting them with new environments in VR learning applications.more » « less
-
Recent studies in urban navigation have revealed new demands (e.g., diversity, safety, happiness, serendipity) for the navigation services that are critical to providing useful recommendations to travelers. This exposes the need to design next-generation navigation services that accommodate these newly emerging aspects. In this paper, we present a prototype system, namely, EPUI (an Experimental Platform of Urban Informatics), which provides a testbed for exploring and evaluating venues and route recommendation solutions that balance between different objectives (i.e., demands) including the newly discovered ones. In addition, EPUI incorporates a modularized design, enabling researchers to upload their own algorithms and compare them to well-known algorithms using different performance metrics. Its user interface makes it easily usable by both end-user and experienced researchers.more » « less
An official website of the United States government

