skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Type-level computations for Ruby libraries
Many researchers have explored ways to bring static typing to dynamic languages. However, to date, such systems are not precise enough when types depend on values, which often arises when using certain Ruby libraries. For example, the type safety of a database query in Ruby on Rails depends on the table and column names used in the query. To address this issue, we introduce CompRDL, a type system for Ruby that allows library method type signatures to include type-level computations (or comp types for short). Combined with singleton types for table and column names, comp types let us give database query methods type signatures that compute a table’s schema to yield very precise type information. Comp types for hash, array, and string libraries can also increase precision and thereby reduce the need for type casts. We formalize CompRDL and prove its type system sound. Rather than type check the bodies of library methods with comp types—those methods may include native code or be complex—CompRDL inserts run-time checks to ensure library methods abide by their computed types. We evaluated CompRDL by writing annotations with type-level computations for several Ruby core libraries and database query APIs. We then used those annotations to type check two popular Ruby libraries and four Ruby on Rails web apps. We found the annotations were relatively compact and could successfully type check 132 methods across our subject programs. Moreover, the use of type-level computations allowed us to check more expressive properties, with fewer manually inserted casts, than was possible without type-level computations. In the process, we found two type errors and a documentation error that were confirmed by the developers. Thus, we believe CompRDL is an important step forward in bringing precise static type checking to dynamic languages.  more » « less
Award ID(s):
1846350
PAR ID:
10132737
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
Page Range / eLocation ID:
966 to 979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Many researchers have explored retrofitting static type systems to dynamic languages. This raises the question of how to add type annotations to code that was previously untyped. One obvious solution is type inference. However, in complex type systems, in particular those with structural types, type inference typically produces most general types that are large, hard to understand, and unnatural for programmers. To solve this problem, we introduce InferDL, a novel Ruby type inference system that infers sound and useful type annotations by incorporating heuristics that guess types. For example, we might heuristically guess that a parameter whose name ends in "count" is an integer. InferDL works by first running standard type inference and then applying heuristics to any positions for which standard type inference produces overly-general types. Heuristic guesses are added as constraints to the type inference problem to ensure they are consistent with the rest of the program and other heuristic guesses; inconsistent guesses are discarded. We formalized InferDL in a core type and constraint language. We implemented InferDL on top of RDL, an existing Ruby type checker. To evaluate InferDL, we applied it to four Ruby on Rails apps that had been previously type checked with RDL, and hence had type annotations. We found that, when using heuristics, InferDL inferred 22% more types that were as or more precise than the previous annotations, compared to standard type inference without heuristics. We also found one new type error. We further evaluated InferDL by applying it to six additional apps, finding five additional type errors. Thus, we believe InferDL represents a promising approach for inferring type annotations in dynamic languages. 
    more » « less
  2. Functional programs typically interact with stateful libraries that hide state behind typed abstractions. One particularly important class of applications are data structure implementations that rely on such libraries to provide a level of efficiency and scalability that may be otherwise difficult to achieve. However, because the specifications of the methods provided by these libraries are necessarily general and rarely specialized to the needs of any specific client, any required application-level invariants must often be expressed in terms of additional constraints on the (often) opaque state maintained by the library. In this paper, we consider the specification and verification of suchrepresentation invariantsusingsymbolic finite automata(SFA). We show that SFAs can be used to succinctly and precisely capture fine-grained temporal and data-dependent histories of interactions between functional clients and stateful libraries. To facilitate modular and compositional reasoning, we integrate SFAs into a refinement type system to qualify stateful computations resulting from such interactions. The particular instantiation we consider,Hoare Automata Types(HATs), allows us to both specify and automatically type-check the representation invariants of a datatype, even when its implementation depends on stateful library methods that operate over hidden state. We also develop a new bidirectional type checking algorithm that implements an efficient subtyping inclusion check over HATs, enabling their translation into a form amenable for SMT-based automated verification. We present extensive experimental results on an implementation of this algorithm that demonstrates the feasibility of type-checking complex and sophisticated HAT-specified OCaml data structure implementations layered on top of stateful library APIs. 
    more » « less
  3. Julia is a modern scientific-computing language that relies on multiple dispatch to implement generic libraries. While the language does not have a static type system, method declarations are decorated with expressive type annotations to determine when they are applicable. To find applicable methods, the implementation uses subtyping at run-time. We show that Julia’s subtyping is undecidable, and we propose a restriction on types to recover decidability by stratifying types into method signatures over value types—where the former can freely use bounded existential types but the latter are restricted to use-site variance. A corpus analysis suggests that nearly all Julia programs written in practice already conform to this restriction. 
    more » « less
  4. Chung-Kil Hur (Ed.)
    Dynamic object-oriented languages, such as Python, Ruby, and Javascript are widely used nowadays. A distinguishing feature of dynamic object-oriented languages is that objects, the fundamental runtime data representation, are highly dynamic, meaning that a single constructor may create objects with different types and objects can evolve freely after their construction. While such dynamism facilitates fast prototyping, it brings many challenges to program understanding. Many type systems have been developed to aid programming understanding, and they adopt various types and techniques to represent and track dynamic objects. However, although many types and techniques have been proposed, it is unclear which one suits real dynamic object usages best. Motivated by this situation, we perform an empirical study on 50 mature Python programs with a focus on object dynamism and object type models. We found that (1) object dynamism is highly prevalent in Python programs, (2) class-based types are not precise to handle dynamic behaviors, as they introduce type errors for 52% of the evaluated polymorphic attributes, (3) typestate-based types, although mostly used in static languages, matches the behaviors of dynamic objects faithfully, and (4) some well-designed but still lightweight techniques for objectbased types, such as argument type separation and recency abstraction can precisely characterize dynamic object behaviors. Those techniques are suitable for building precise but still concise object-based types. 
    more » « less
  5. We consider the problem of type-directed component-based synthesis where, given a set of (typed) components and a querytype, the goal is to synthesize atermthat inhabits the query. Classical approaches based on proof search in intuitionistic logics do not scale up to the standard libraries of modern languages, which span hundreds or thousands of components. Recent graph reachability based methods proposed for Java do scale, but only apply to monomorphic data and components: polymorphic data and components infinitely explode the size of the graph that must be searched, rendering synthesis intractable. We introducetype-guided abstraction refinement(TYGAR), a new approach for scalable type-directed synthesis over polymorphic datatypes and components. Our key insight is that we can overcome the explosion by building a graph overabstract typeswhich represent a potentially unbounded set of concrete types. We show how to use graph reachability to search for candidate terms over abstract types, and introduce a new algorithm that usesproofs of untypeabilityof ill-typed candidates to iterativelyrefinethe abstraction until a well-typed result is found. We have implemented TYGAR in H+, a tool that takes as input a set of Haskell libraries and a query type, and returns a Haskell term that uses functions from the provided libraries to implement the query type. Our support for polymorphism allows H+ to work with higher-order functions and type classes, and enables more precise queries due to parametricity. We have evaluated H+ on 44 queries using a set of popular Haskell libraries with a total of 291 components. H+ returns an interesting solution within the first five results for 32 out of 44 queries. Our results show that TYGAR allows H+ to rapidly return well-typed terms, with the median time to first solution of just 1.4 seconds. Moreover, we observe that gains from iterative refinement over exhaustive enumeration are more pronounced on harder queries. 
    more » « less