Gradual typing has emerged as a popular design point in programming languages, attracting significant interests from both academia and industry. Programmers in gradually typed languages are free to utilize static and dynamic typing as needed. To make such languages sound, runtime checks mediate the boundary of typed and untyped code. Unfortunately, such checks can incur significant runtime overhead on programs that heavily mix static and dynamic typing. To combat this overhead without necessitating changes to the underlying implementations of languages, we presentdiscriminative typing. Discriminative typing works by optimistically inferring types for functions and implementing an optimized version of the function based on this type. To preserve safety it also implements an un-optimized version of the function based purely on the provided annotations. With two versions of each function in hand, discriminative typing translates programs so that the optimized functions are called as frequently as possible while also preserving program behaviors. We have implemented discriminative typing in Reticulated Python and have evaluated its performance compared to guarded Reticulated Python. Our results show that discriminative typing improves the performance across 95% of tested programs, when compared to Reticulated, and achieves more than 4× speedup in more than 56% of these programs. We also compare its performance against a previous optimization approach and find that discriminative typing improved performance across 93% of tested programs, with 30% of these programs receiving speedups between 4 to 25 times. Finally, our evaluation shows that discriminative typing remarkably reduces the overhead of gradual typing on many mixed type configurations of programs. In addition, we have implemented discriminative typing in Grift and evaluated its performance. Our evaluation demonstrations that DT significantly improves performance of Grift.
more »
« less
What Types are Needed for Typing Dynamic Objects? A Python-based Empirical Study
Dynamic object-oriented languages, such as Python, Ruby, and Javascript are widely used nowadays. A distinguishing feature of dynamic object-oriented languages is that objects, the fundamental runtime data representation, are highly dynamic, meaning that a single constructor may create objects with different types and objects can evolve freely after their construction. While such dynamism facilitates fast prototyping, it brings many challenges to program understanding. Many type systems have been developed to aid programming understanding, and they adopt various types and techniques to represent and track dynamic objects. However, although many types and techniques have been proposed, it is unclear which one suits real dynamic object usages best. Motivated by this situation, we perform an empirical study on 50 mature Python programs with a focus on object dynamism and object type models. We found that (1) object dynamism is highly prevalent in Python programs, (2) class-based types are not precise to handle dynamic behaviors, as they introduce type errors for 52% of the evaluated polymorphic attributes, (3) typestate-based types, although mostly used in static languages, matches the behaviors of dynamic objects faithfully, and (4) some well-designed but still lightweight techniques for objectbased types, such as argument type separation and recency abstraction can precisely characterize dynamic object behaviors. Those techniques are suitable for building precise but still concise object-based types.
more »
« less
- Award ID(s):
- 1750886
- PAR ID:
- 10491338
- Editor(s):
- Chung-Kil Hur
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- rogramming Languages and Systems - 21st Asian Symposium
- Volume:
- 14405
- ISBN:
- 978-981-99-8310-0
- Page Range / eLocation ID:
- 24-45
- Format(s):
- Medium: X
- Location:
- Taipei, Taiwan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Identifying similar code in software systems can assist many software engineering tasks such as program understanding and software refactoring. While most approaches focus on identifying code that looks alike, some techniques aim at detecting code that functions alike. Detecting these functional clones - code that functions alike - in object oriented languages remains an open question because of the difficulty in exposing and comparing programs' functionality effectively. We propose a novel technique, In-Vivo Clone Detection, that detects functional clones in arbitrary programs by identifying and mining their inputs and outputs. The key insight is to use existing workloads to execute programs and then measure functional similarities between programs based on their inputs and outputs, which mitigates the problems in object oriented languages reported by prior work. We implement such technique in our system, HitoshiIO, which is open source and freely available. Our experimental results show that HitoshiIO detects more than 800 functional clones across a corpus of 118 projects. In a random sample of the detected clones, HitoshiIO achieves 68+% true positive rate with only 15% false positive rate.more » « less
-
Garbage collection (GC) support for unmanaged languages can reduce programming burden in reasoning about liveness of dynamic objects. It also avoids temporal memory safety violations and memory leaks.SoundGC for weakly-typed languages such as C/C++, however, remains an unsolved problem. Current value-based GC solutions examine values of memory locations to discover the pointers, and the objects they point to. The approach is inherently unsound in the presence of arbitrary type casts and pointer manipulations, which are legal in C/C++. Such language features are regularly used, especially in low-level systems code. In this paper, we propose Dynamic Pointer Provenance Tracking to realize sound GC. We observe that pointers cannot be created out-of-thin-air, and they must have provenance to at least one valid allocation. Therefore, by tracking pointer provenance from the source (e.g., malloc) through both explicit data-flow and implicit control-flow, our GC has sound and precise information to compute the set of all reachable objects at any program state. We discuss several static analysis optimizations, that can be employed during compilation aided with profiling, to significantly reduce the overhead of dynamic provenance tracking from nearly 8× to 16% for well-behaved programs that adhere to the C standards. Pointer provenance based sound GC invocation is also 13% faster and reclaims 6% more memory on average, compared to an unsound value-based GC.more » « less
-
This paper introduces GEKKO as an optimization suite for Python. GEKKO specializes in dynamic optimization problems for mixed-integer, nonlinear, and differential algebraic equations (DAE) problems. By blending the approaches of typical algebraic modeling languages (AML) and optimal control packages, GEKKO greatly facilitates the development and application of tools such as nonlinear model predicative control (NMPC), real-time optimization (RTO), moving horizon estimation (MHE), and dynamic simulation. GEKKO is an object-oriented Python library that offers model construction, analysis tools, and visualization of simulation and optimization. In a single package, GEKKO provides model reduction, an object-oriented library for data reconciliation/model predictive control, and integrated problem construction/solution/visualization. This paper introduces the GEKKO Optimization Suite, presents GEKKO’s approach and unique place among AMLs and optimal control packages, and cites several examples of problems that are enabled by the GEKKO library.more » « less
-
Many researchers have explored ways to bring static typing to dynamic languages. However, to date, such systems are not precise enough when types depend on values, which often arises when using certain Ruby libraries. For example, the type safety of a database query in Ruby on Rails depends on the table and column names used in the query. To address this issue, we introduce CompRDL, a type system for Ruby that allows library method type signatures to include type-level computations (or comp types for short). Combined with singleton types for table and column names, comp types let us give database query methods type signatures that compute a table’s schema to yield very precise type information. Comp types for hash, array, and string libraries can also increase precision and thereby reduce the need for type casts. We formalize CompRDL and prove its type system sound. Rather than type check the bodies of library methods with comp types—those methods may include native code or be complex—CompRDL inserts run-time checks to ensure library methods abide by their computed types. We evaluated CompRDL by writing annotations with type-level computations for several Ruby core libraries and database query APIs. We then used those annotations to type check two popular Ruby libraries and four Ruby on Rails web apps. We found the annotations were relatively compact and could successfully type check 132 methods across our subject programs. Moreover, the use of type-level computations allowed us to check more expressive properties, with fewer manually inserted casts, than was possible without type-level computations. In the process, we found two type errors and a documentation error that were confirmed by the developers. Thus, we believe CompRDL is an important step forward in bringing precise static type checking to dynamic languages.more » « less
An official website of the United States government

