skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Year in K-12 AI Education
The time is ripe to consider what 21st-century digital citizens should know about artificial intelligence (AI). Efforts are under way in the USA, China, and many other countries to promote AI education in kindergarten through high school (K–12). The past year has seen the release of new curricula and online resources for the K–12 audience, and new professional development opportunities for K–12 teachers to learn the basics of AI. This column surveys the current state of K–12 AI education and introduces the work of the AI4K12 Initiative, which is developing national guidelines for AI education in the USA.   A Note to the Reader This is the inaugural column on AI education. It aims to inform the AAAI community of current and future developments in AI education. We hope that the reader finds the columns to be informative and that they stimulate debate. It is our fond hope that this and subsequent columns inspire the reader to get involved in the broad field of AI education, by volunteering their expertise in their local school district, by providing level-headed input when discussing AI with family and friends or by lending their considerable expertise to various decision makers. We welcome your feedback, whether in the form of a response to an article or a suggestion for a future article. – Michael Wollowski, AI in Education Column Editor  more » « less
Award ID(s):
1846073
PAR ID:
10132839
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
AI Magazine
Volume:
40
Issue:
4
ISSN:
0738-4602
Page Range / eLocation ID:
88 to 90
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The future of AI will be determined in part by how its developers are educated. Thus, how computer science (CS) education incorporates instruction in various aspects of AI will have a substantial impact on AI's evolution. Understanding how and what CS educators think about AI education is, therefore, an important piece of the landscape in anticipating -- and shaping -- the future of AI. However, little is known about how educators perceive the role of AI education in CS education, and there is no consensus yet regarding what AI topics should be taught to all students. This paper helps to fill that gap by presenting a qualitative analysis of data collected from high school CS instructors, higher education CS faculty, and those working in the tech industry as they reflected on their priorities for high school CS instruction and on anticipated changes in high school, college, and workplace CS. We conclude with recommendations for the CS education research community around AI in K-12, particularly at the high school level. 
    more » « less
  2. The emergence of increasingly powerful AI technologies calls for the design and development of K-12 AI literacy curricula that can support students who will be entering a profoundly changed labor market. However, developing, implementing, and scaling AI literacy curricula poses significant challenges. It will be essential to develop a robust, evidence-based AI education research foundation that can inform AI literacy curriculum development. Unlike K-12 science and mathematics education, there is not currently a research foundation for K-12 AI education. In this article we provide a component-based definition of AI literacy, present the need for implementing AI literacy education across all grade bands, and argue for the creation of research programs across four areas of AI education: (1) K-12 AI Learning & Technology; (2) K-12 AI Education Integration into STEM, Language Arts, and Social Science Education; (3) K-12 AI Professional Development for Teachers and Administrators; and (4) K-12 AI Assessment. 
    more » « less
  3. Artificial Intelligence (AI) enhanced systems are widely adopted in post-secondary education, however, tools and activities have only recently become accessible for teaching AI and machine learning (ML) concepts to K-12 students. Research on K-12 AI education has largely included student attitudes toward AI careers, AI ethics, and student use of various existing AI agents such as voice assistants; most of which has focused on high school and middle school. There is no consensus on which AI and Machine Learning concepts are grade-appropriate for elementary-aged students or how elementary students explore and make sense of AI and ML tools. AI is a rapidly evolving technology and as future decision-makers, children will need to be AI literate[1]. In this paper, we will present elementary students’ sense-making of simple machine-learning concepts. Through this project, we hope to generate a new model for introducing AI concepts to elementary students into school curricula and provide tangible, trainable representations of ML for students to explore in the physical world. In our first year, our focus has been on simpler machine learning algorithms. Our desire is to empower students to not only use AI tools but also to understand how they operate. We believe that appropriate activities can help late elementary-aged students develop foundational AI knowledge namely (1) how a robot senses the world, and (2) how a robot represents data for making decisions. Educational robotics programs have been repeatedly shown to result in positive learning impacts and increased interest[2]. In this pilot study, we leveraged the LEGO® Education SPIKE™ Prime for introducing ML concepts to upper elementary students. Through pilot testing in three one-week summer programs, we iteratively developed a limited display interface for supervised learning using the nearest neighbor algorithm. We collected videos to perform a qualitative evaluation. Based on analyzing student behavior and the process of students trained in robotics, we found some students show interest in exploring pre-trained ML models and training new models while building personally relevant robotic creations and developing solutions to engineering tasks. While students were interested in using the ML tools for complex tasks, they seemed to prefer to use block programming or manual motor controls where they felt it was practical. 
    more » « less
  4. With the increasing prevalence of large language models (LLMs) such as ChatGPT, there is a growing need to integrate natural language processing (NLP) into K-12 education to better prepare young learners for the future AI landscape. NLP, a sub-field of AI that serves as the foundation of LLMs and many advanced AI applications, holds the potential to enrich learning in core subjects in K-12 classrooms. In this experience report, we present our efforts to integrate NLP into science classrooms with 98 middle school students across two US states, aiming to increase students’ experience and engagement with NLP models through textual data analyses and visualizations. We designed learning activities, developed an NLP-based interactive visualization platform, and facilitated classroom learning in close collaboration with middle school science teachers. This experience report aims to contribute to the growing body of work on integrating NLP into K-12 education by providing insights and practical guidelines for practitioners, researchers, and curriculum designers. 
    more » « less
  5. Artificial intelligence (AI) has rapidly pervaded and reshaped almost all walks of life, but efforts to promote AI literacy in K-12 schools remain limited. There is a knowledge gap in how to prepare teachers to teach AI literacy in inclusive classrooms and how teacher-led classroom implementations can impact students. This paper reports a comparison study to investigate the effectiveness of an AI literacy curriculum when taught by classroom teachers. The experimental group included 89 middle school students who learned an AI literacy curriculum during regular school hours. The comparison group consisted of 69 students who did not learn the curriculum. Both groups completed the same pre and post-test. The results show that students in the experimental group developed a deeper understanding of AI concepts and more positive attitudes toward AI and its impact on future careers after the curriculum than those in the comparison group. This shows that the teacher-led classroom implementation successfully equipped students with a conceptual understanding of AI. Students achieved significant gains in recognizing how AI is relevant to their lives and felt empowered to thrive in the age of AI. Overall this study confirms the potential of preparing K-12 classroom teachers to offer AI education in classrooms in order to reach learners of diverse backgrounds and broaden participation in AI literacy education among young learners. 
    more » « less