skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: K-12 Education in the Age of AI: A Call to Action for K-12 AI Literacy
The emergence of increasingly powerful AI technologies calls for the design and development of K-12 AI literacy curricula that can support students who will be entering a profoundly changed labor market. However, developing, implementing, and scaling AI literacy curricula poses significant challenges. It will be essential to develop a robust, evidence-based AI education research foundation that can inform AI literacy curriculum development. Unlike K-12 science and mathematics education, there is not currently a research foundation for K-12 AI education. In this article we provide a component-based definition of AI literacy, present the need for implementing AI literacy education across all grade bands, and argue for the creation of research programs across four areas of AI education: (1) K-12 AI Learning & Technology; (2) K-12 AI Education Integration into STEM, Language Arts, and Social Science Education; (3) K-12 AI Professional Development for Teachers and Administrators; and (4) K-12 AI Assessment.  more » « less
Award ID(s):
2116109 1938758
PAR ID:
10428204
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International journal of artificial intelligence in education
ISSN:
1560-4292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The time is ripe to consider what 21st-century digital citizens should know about artificial intelligence (AI). Efforts are under way in the USA, China, and many other countries to promote AI education in kindergarten through high school (K–12). The past year has seen the release of new curricula and online resources for the K–12 audience, and new professional development opportunities for K–12 teachers to learn the basics of AI. This column surveys the current state of K–12 AI education and introduces the work of the AI4K12 Initiative, which is developing national guidelines for AI education in the USA.   A Note to the Reader This is the inaugural column on AI education. It aims to inform the AAAI community of current and future developments in AI education. We hope that the reader finds the columns to be informative and that they stimulate debate. It is our fond hope that this and subsequent columns inspire the reader to get involved in the broad field of AI education, by volunteering their expertise in their local school district, by providing level-headed input when discussing AI with family and friends or by lending their considerable expertise to various decision makers. We welcome your feedback, whether in the form of a response to an article or a suggestion for a future article. – Michael Wollowski, AI in Education Column Editor 
    more » « less
  2. The ubiquity of AI in society means the time is ripe to consider what educated 21st century digital citizens should know about this subject. In May 2018, the Association for the Advancement of Artificial Intelligence (AAAI) and the Computer Science Teachers Association (CSTA) formed a joint working group to develop national guidelines for teaching AI to K-12 students. Inspired by CSTA's national standards for K-12 computing education, the AI for K-12 guidelines will define what students in each grade band should know about artificial intelligence, machine learning, and robotics. The AI for K-12 working group is also creating an online resource directory where teachers can find AI- related videos, demos, software, and activity descriptions they can incorporate into their lesson plans. This blue sky talk invites the AI research community to reflect on the big ideas in AI that every K-12 student should know, and how we should communicate with the public about advances in AI and their future impact on society. It is a call to action for more AI researchers to become AI educators, creating resources that help teachers and students understand our work. 
    more » « less
  3. AI is rapidly emerging as a tool that can be used by everyone, increasing its impact on our lives, society, and the economy. There is a need to develop educational programs and curricula that can increase capacity and diversity in AI as well as awareness of the implications of using AI-driven technologies. This paper reports on a workshop whose goals include developing guidelines for ensuring that we expand the diversity of people engaged in AI while expanding the capacity for AI curricula with a scope of content that will reflectthe competencies and needs of the workforce. The scope for AI education included K-Gray and considered AI knowledge and competencies as well as AI literacy (including responsible use and ethical issues). Participants discussed recommendations for metrics measuring capacity and diversity as well as strategies for increasing capacity and diversity at different level of education: K-12, undergraduate and graduate Computer Science (CS) majors and non-CS majors, the workforce, and the public. 
    more » « less
  4. Artificial intelligence (AI) has rapidly pervaded and reshaped almost all walks of life, but efforts to promote AI literacy in K-12 schools remain limited. There is a knowledge gap in how to prepare teachers to teach AI literacy in inclusive classrooms and how teacher-led classroom implementations can impact students. This paper reports a comparison study to investigate the effectiveness of an AI literacy curriculum when taught by classroom teachers. The experimental group included 89 middle school students who learned an AI literacy curriculum during regular school hours. The comparison group consisted of 69 students who did not learn the curriculum. Both groups completed the same pre and post-test. The results show that students in the experimental group developed a deeper understanding of AI concepts and more positive attitudes toward AI and its impact on future careers after the curriculum than those in the comparison group. This shows that the teacher-led classroom implementation successfully equipped students with a conceptual understanding of AI. Students achieved significant gains in recognizing how AI is relevant to their lives and felt empowered to thrive in the age of AI. Overall this study confirms the potential of preparing K-12 classroom teachers to offer AI education in classrooms in order to reach learners of diverse backgrounds and broaden participation in AI literacy education among young learners. 
    more » « less
  5. There is an ongoing need to integrate computing-related education within existing K-12 curriculum to maintain global competitiveness and security. Our research addresses the challenge of equitable access to concepts from across the computing spectrum - from computing systems to computer science and computational thinking. The research focuses on overcoming the digital divide by enabling K-12 educators to become conduits for computing education, thereby equipping students with essential computational skills and knowledge. Through two National Science Foundation awards, the team used a mixed-methods approach to develop and assess several traditional and non-traditional teacher engagements. These engagements included a week-long professional development program for K-8 educators and librarians, aimed at designing computing lessons for integration into non-CS disciplines, and a six-week research experience for educators, focused on infusing CS and research concepts into classroom environments. Each of these two engagements was repeated for three consecutive years for a total of six engagements. The assessment of these methods involved qualitative analyses of educator feedback, lesson plan evaluations, and quantitative measures of student engagement and learning outcomes. Our collected artifacts includes over 300 teacher-created and led, innovative lessons spanning a broad spectrum of subjects and educational levels. These lessons have directly engaged several thousand students, demonstrating a marked improvement in computational thinking skills across diverse student populations. Moreover, the engagements have resulted in a significant shift towards viewing computational thinking as an integral element of K-12 education, rather than a standalone discipline. This work highlights the process through which educators can become empowered to integrate computing principles across various subjects and also showcases the tangible benefits of such integration. By facilitating the authentic, teacher-led development of computing lessons and their integration into existing curricula, our research underscores the critical role of educators in bridging the digital divide and fostering a comprehensive educational experience that includes topics from across the computing spectrum. 
    more » « less