skip to main content


Title: On the Accuracy of Network Synchronization Using Persistent Hourglass Clocks
Batteryless sensor nodes compute, sense, and communicate using only energy harvested from the ambient. These devices promise long maintenance free operation in hard to deploy scenarios, making them an attractive alternative to battery-powered wireless sensor networks. However, complications from frequent power failures due to unpredictable ambient energy stand in the way of robust network operation. Unlike continuously-powered systems, intermittently-powered batteryless nodes lose their time upon each reboot, along with all volatile memory, making synchronization and coordination difficult. In this paper, we consider the case where each batteryless sensor is equipped with a hourglass capacitor to estimate the elapsed time between power failures. Contrary to prior work that focused on providing a continuous notion of time for a single batteryless sensor, we consider a network of batteryless sensors and explore how to provide a network-wide, continuous, and synchronous notion of time. First, we build a mathematical model that represents the estimated time between power failures by using hourglass capacitors. This allowed us to simulate the local (and continuous) time of a single batteryless node. Second, we show--through simulations--the effect of hourglass capacitors and in turn the performance degradation of the state of the art synchronization protocol in wireless sensor networks in a network of batteryless devices.  more » « less
Award ID(s):
1850496
NSF-PAR ID:
10132858
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 7th International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems
Page Range / eLocation ID:
35 to 41
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recently, benefiting from rapid development of energy harvesting technologies, the research trend of wireless sensor networks has shifted from the battery‐powered network to the one that can harvest energy from ambient environments. In such networks, a proper use of harvested energy poses plenty of challenges caused by numerous influence factors and complex application environments. Although numerous works have been based on the energy status of sensor nodes, no work refers to the issue of minimizing the overall data transmission cost by adjusting transmission power of nodes in energy‐harvesting wireless sensor networks. In this paper, we consider the optimization problem of deriving the energy‐neutral minimum cost paths between the source nodes and the sink node. By introducing the concept of energy‐neutral operation, we first propose a polynomial‐time optimal algorithm for finding the optimal path from a single source to the sink by adjusting the transmission powers. Based on the work earlier, another polynomial‐time algorithm is further proposed for finding the approximated optimal paths from multiple sources to the sink node. Also, we analyze the network capacity and present a near‐optimal algorithm based on the Ford–Fulkerson algorithm for approaching the maximum flow in the given network. We have validated our algorithms by various numerical results in terms of path capacity, least energy of nodes, energy ratio, and path cost. Simulation results show that the proposed algorithms achieve significant performance enhancements over existing schemes. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  2. null (Ed.)
    Energy-harvesting devices have enabled Internet of Things applications that were impossible before. One core challenge of batteryless sensors that operate intermittently is reliable timekeeping. State-of-the-art low-power real-time clocks suffer from long start-up times (order of seconds) and have low timekeeping granularity (tens of milliseconds at best), often not matching timing requirements of devices that experience numerous power outages per second. Our key insight is that time can be inferred by measuring alternative physical phenomena, like the discharge of a simple RC circuit, and that timekeeping energy cost and accuracy can be modulated depending on the run-time requirements. We achieve these goals with a multi-tier timekeeping architecture, named Cascaded Hierarchical Remanence Timekeeper (CHRT), featuring an array of different RC circuits to be used for dynamic timekeeping requirements. The CHRT and its accompanying software interface are embedded into a fresh batteryless wireless sensing platform, called Botoks, capable of tracking time across power failures. Low start-up time (max 5 ms), high resolution (up to 1 ms) and run-time reconfigurability are the key features of our timekeeping platform. We developed two time-sensitive batteryless applications to demonstrate the approach: a bicycle analytics tool, where the CHRT is used to track time between revolutions of a bicycle wheel, and wireless communication, where the CHRT enables radio synchronization between two intermittently-powered sensors. 
    more » « less
  3. null (Ed.)
    Supply energy to battery-powered sensor devices by deploying wireless chargers is a promising way to prolong the operation time of wireless sensor networks, and has attracted much attention recently. Existing works focus on maximizing the total received charging power of the network. However, this may face the unbalanced energy allocation problem, which is not beneficial to prolong the operation time of wireless sensor networks. In this paper, we consider the individual energy requirement of each sensor node, and study the problem of minimum charger placement. That is, we focus on finding a strategy for placing wireless chargers from a given candidate location set, such that each sensor node’s energy requirement can be met, meanwhile the total number of used chargers can be minimized. We show that the problem to be solved is NP-hard, and present two approximation algorithms which are based on the greedy scheme and relax rounding scheme, respectively. We prove that both of the two algorithms have performance guarantees. Finally, we validate the performance of our algorithms by performing extensive numerical simulations. Simulation results show the effectiveness of our proposed algorithms 
    more » « less
  4. The recent report by American Society of Civil Engineers gave the nation's bridges an unimpressive C grade. Across the country, more than 617,000 highway bridges: 46,154 structurally deficient and 42% 50+ years old. Continuous bridge assessment is essential to protect public safety. Federal Highway Administration requires all highway bridges inspected once every 24 months. However, any drastic change on bridges within 24 months will be left undetected. Nonetheless, bridge inspection is time-consuming and labor-intensive. Civil engineers have been using bridge health monitoring (BHM) systems with wired and/or wireless sensors to measure structural response (e.g., displacement, strain, acceleration) of a bridge. The response measurements are then converted to the information related to structural health for assessment. State-of-the-art BHM technology deploys sensor networks to facilitate data connection. Installing cables is expensive and subject to extreme weather. Wireless solutions face challenges such as energy consumption. Sensors are battery-powered. Another not well-publicized problem is security threats inherited in wireless networks. Our approach to wireless BHM is to utilize sensors networkless by collecting data with a drone. Similar to a mail carrier who goes around and picks up the mail, a drone collects data from sensors throughout the bridge. A drone eliminates restrictions for civil engineers on node placement since the drone replaces sink nodes. Networkless makes BHM less prone to attacks such as Jamming and DoS. To secure access, we deploy a Needham-Schroeder authentication protocol for the drone to collect data from sensor nodes securely. Networkless sensing for BHM benefits energy efficiency. It saves battery life as the sensor nodes remain asleep until scheduled transmission or woken up by a drone. It reduces design complexity and operation energy. The system also assures security since there is no vulnerable network to be attacked. 
    more » « less
  5. Gao, H. ; Fan, P. ; Wun, J. ; Xiaoping, X. ; Yu, J. ; Wang, Y. (Ed.)
    RFID technology is playing an increasingly more important role in the Internet of Things, especially in the dense deployment model. In such networks, in addition to communication, nodes may also need to harvest energy from the environment to operate. In particular, we assume that our network model relies on RFID sensor network consisting of Wireless Identification and Sensing Platform (WISP) devices and RFID exciters. In WISP, the sensors harvest ambient energy from the RFID exciters and use this energy for communication back to the exciter. However, as the number of exciters is typically small, sensors further away from an exciter will need longer charging time to be able to transmit the same amount of information than a closer by sensor. Thus, further away sensors limit the overall throughput of the network. In this paper, we propose to use a multi-modulation scheme, which trades off power for transmission duration. More specifically, in this scheme, sensors closer to the exciter use a higher-order modulation, which requires more power than a lower-order modulation assigned to further away sensors, for the same bit error rate of all the sensors’ transmissions. This reduces the transmission time of the closer sensors, while also reducing the charging time of the further away sensors, overall increasing the total net-work throughput. The evaluation results show that the RFID sensor network with our multi-modulation scheme has significantly higher throughput as compared with the traditional single-modulation scheme. 
    more » « less