- Award ID(s):
- 1850496
- PAR ID:
- 10132860
- Date Published:
- Journal Name:
- 25th Annual International Conference on Mobile Computing and Networking
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Background The use of wearables facilitates data collection at a previously unobtainable scale, enabling the construction of complex predictive models with the potential to improve health. However, the highly personal nature of these data requires strong privacy protection against data breaches and the use of data in a way that users do not intend. One method to protect user privacy while taking advantage of sharing data across users is federated learning, a technique that allows a machine learning model to be trained using data from all users while only storing a user’s data on that user’s device. By keeping data on users’ devices, federated learning protects users’ private data from data leaks and breaches on the researcher’s central server and provides users with more control over how and when their data are used. However, there are few rigorous studies on the effectiveness of federated learning in the mobile health (mHealth) domain. Objective We review federated learning and assess whether it can be useful in the mHealth field, especially for addressing common mHealth challenges such as privacy concerns and user heterogeneity. The aims of this study are to describe federated learning in an mHealth context, apply a simulation of federated learning to an mHealth data set, and compare the performance of federated learning with the performance of other predictive models. Methods We applied a simulation of federated learning to predict the affective state of 15 subjects using physiological and motion data collected from a chest-worn device for approximately 36 minutes. We compared the results from this federated model with those from a centralized or server model and with the results from training individual models for each subject. Results In a 3-class classification problem using physiological and motion data to predict whether the subject was undertaking a neutral, amusing, or stressful task, the federated model achieved 92.8% accuracy on average, the server model achieved 93.2% accuracy on average, and the individual model achieved 90.2% accuracy on average. Conclusions Our findings support the potential for using federated learning in mHealth. The results showed that the federated model performed better than a model trained separately on each individual and nearly as well as the server model. As federated learning offers more privacy than a server model, it may be a valuable option for designing sensitive data collection methods.more » « less
-
The proliferation of Internet-connected health devices and the widespread availability of mobile connectivity have resulted in a wealth of reliable digital health data and the potential for delivering just-in-time interventions. However, leveraging these opportunities for health research requires the development and deployment of mobile health (mHealth) applications, which present significant technical challenges for researchers. While existing mHealth solutions have made progress in addressing some of these challenges, they often fall short in terms of time-to-use, affordability, and flexibility for personalization and adaptation. ZotCare aims to address these limitations by offering ready-to-use and flexible services, providing researchers with an accessible, cost-effective, and adaptable solution for their mHealth studies. This article focuses on ZotCare’s service orchestration and highlights its capabilities in creating a programmable environment for mHealth research. Additionally, we showcase several successful research use cases that have utilized ZotCare, both in the past and in ongoing projects. Furthermore, we provide resources and information for researchers who are considering ZotCare as their mHealth research solution.
-
Public release of wrist-worn motion sensor data is growing. They enable and accelerate research in developing new algorithms to passively track daily activities, resulting in improved health and wellness utilities of smartwatches and activity trackers. But, when combined with sensitive attribute inference attack and linkage attack via re-identification of the same user in multiple datasets, undisclosed sensitive attributes can be revealed to unintended organizations with potentially adverse consequences for unsuspecting data contributing users. To guide both users and data collecting researchers, we characterize the re-identification risks inherent in motion sensor data collected from wrist-worn devices in users' natural environment. For this purpose, we use an open-set formulation, train a deep learning architecture with a new loss function, and apply our model to a new data set consisting of 10 weeks of daily sensor wearing by 353 users. We find that re-identification risk increases with an increase in the activity intensity. On average, such risk is 96% for a user when sharing a full day of sensor data.more » « less
-
The evolution of Mechatronics and Robotics Engineering (MRE) has enabled numerous technological advancements since the early 20th century. Professionals in this field are reshaping the world by designing smart and autonomous systems aiming to improve human well-being. Recognizing the need for preparing highly-educated MRE professionals, many universities and colleges are adopting MRE as a distinct degree program. One of the cornerstones of MRE education is laboratory- and project-based learning to provide a hands-on and engaging experience for the students. To this end, numerous software and hardware platforms have been developed and utilized in MRE courses and laboratories. Commercial products can provide a rich hands-on experience for the students, but they can be cost-prohibitive. On the other hand, open-source platforms are low-cost alternatives to their commercial counterparts and are being increasingly used in industry. Developing open-source laboratory platforms will be a more feasible option for a wider range of institutions and would enable familiarizing the students with recent technological trends in industry and exposing them to the development details of a real-world system. However, adoption of open-source platforms in MRE courses can be lengthy and time consuming. Educators who wish to utilize such systems typically lack the expertise in all aspects of their implementation which can make them difficult to troubleshoot. Debugging open-source systems can also be challenging because most of the troubleshooting is done through forum discussions which appear to be very noisy and unfocused. The flip side of this chaotic nature of the open-source world is that there is a vast amount of information available, including tutorials, examples, and commentary and, with some focused searching, debugging and usage questions can often get answered. There is also a disconnect between the forum participants, typically computer scientists and hobbyists, and MRE educators and students. Finally, the available resources and documentation for utilizing open-source platforms in MRE education are insufficient and incomprehensive. Therefore, the main goal of this paper is to increase awareness and familiarity with the use of open-source software and hardware packages in MRE education and practice towards accelerating their adoption. To this end, open-source software packages such as Python, GNU Octave, OpenFOAM, Java, Modelica, Gazebo, SPICE, Scilab, and Gnuplot, which have the potential to be useful in the modeling and analysis of MRE systems are introduced. Furthermore, low-cost and powerful open-source hardware packages such as Arduino, Raspberry Pi, and BeagleBone which can be used as the main processing unit for data acquisition and control implementation in a wide range of MRE systems are reviewed and their limitations and potentials are investigated. This paper provides a valuable resource for MRE students and faculty who would like to utilize open-source hardware and software platforms in their education and research.more » « less
-
This paper focuses on COSMOS ś Cloud enhanced Open Software defined MObile wireless testbed for city-Scale deployment. The COSMOS testbed is being deployed in West Harlem (New York City) as part of the NSF Platforms for Advanced Wireless Research (PAWR) program. It will enable researchers to explore the technology łsweet spotž of ultra-high bandwidth and ultra-low latency in the most demanding real-world environment. We describe the testbed’s architecture, the design and deployment challenges, and the experience gained during the design and pilot deployment. Specifically, we describe COSMOS’ computing and network architectures, the critical building blocks, and its programmability at different layers. The building blocks include software-defined radios, 28 GHz millimeter-wave phased array modules, optical transport network, core and edge cloud, and control and management software. We describe COSMOS’ deployment phases in a dense urban environment, the research areas that could be studied in the testbed, and specific example experiments. Finally, we discuss our experience with using COSMOS as an educational tool.more » « less