skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning From Others Without Sacrificing Privacy: Simulation Comparing Centralized and Federated Machine Learning on Mobile Health Data
Background The use of wearables facilitates data collection at a previously unobtainable scale, enabling the construction of complex predictive models with the potential to improve health. However, the highly personal nature of these data requires strong privacy protection against data breaches and the use of data in a way that users do not intend. One method to protect user privacy while taking advantage of sharing data across users is federated learning, a technique that allows a machine learning model to be trained using data from all users while only storing a user’s data on that user’s device. By keeping data on users’ devices, federated learning protects users’ private data from data leaks and breaches on the researcher’s central server and provides users with more control over how and when their data are used. However, there are few rigorous studies on the effectiveness of federated learning in the mobile health (mHealth) domain. Objective We review federated learning and assess whether it can be useful in the mHealth field, especially for addressing common mHealth challenges such as privacy concerns and user heterogeneity. The aims of this study are to describe federated learning in an mHealth context, apply a simulation of federated learning to an mHealth data set, and compare the performance of federated learning with the performance of other predictive models. Methods We applied a simulation of federated learning to predict the affective state of 15 subjects using physiological and motion data collected from a chest-worn device for approximately 36 minutes. We compared the results from this federated model with those from a centralized or server model and with the results from training individual models for each subject. Results In a 3-class classification problem using physiological and motion data to predict whether the subject was undertaking a neutral, amusing, or stressful task, the federated model achieved 92.8% accuracy on average, the server model achieved 93.2% accuracy on average, and the individual model achieved 90.2% accuracy on average. Conclusions Our findings support the potential for using federated learning in mHealth. The results showed that the federated model performed better than a model trained separately on each individual and nearly as well as the server model. As federated learning offers more privacy than a server model, it may be a valuable option for designing sensitive data collection methods.  more » « less
Award ID(s):
1646108
PAR ID:
10286030
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
JMIR mHealth and uHealth
Volume:
9
Issue:
3
ISSN:
2291-5222
Page Range / eLocation ID:
e23728
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We show that aggregated model updates in federated learning may be insecure. An untrusted central server may disaggregate user updates from sums of updates across participants given repeated observations, enabling the server to recover privileged information about individual users’ private training data via traditional gradient inference attacks. Our method revolves around reconstructing participant information (e.g: which rounds of training users participated in) from aggregated model updates by leveraging summary information from device analytics commonly used to monitor, debug, and manage federated learning systems. Our attack is parallelizable and we successfully disaggregate user updates on settings with up to thousands of participants. We quantitatively and qualitatively demonstrate significant improvements in the capability of various inference attacks on the disaggregated updates. Our attack enables the attribution of learned properties to individual users, violating anonymity, and shows that a determined central server may undermine the secure aggregation protocol to break individual users’ data privacy in federated learning. 
    more » « less
  2. Matrix factorization (MF) approximates unobserved ratings in a rating matrix, whose rows correspond to users and columns correspond to items to be rated, and has been serving as a fundamental building block in recommendation systems. This paper comprehensively studies the problem of matrix factorization in different federated learning (FL) settings, where a set of parties want to cooperate in training but refuse to share data directly. We first propose a generic algorithmic framework for various settings of federated matrix factorization (FMF) and provide a theoretical convergence guarantee. We then systematically characterize privacy-leakage risks in data collection, training, and publishing stages for three different settings and introduce privacy notions to provide end-to-end privacy protections. The first one is vertical federated learning (VFL), where multiple parties have the ratings from the same set of users but on disjoint sets of items. The second one is horizontal federated learning (HFL), where parties have ratings from different sets of users but on the same set of items. The third setting is local federated learning (LFL), where the ratings of the users are only stored on their local devices. We introduce adapted versions of FMF with the privacy notions guaranteed in the three settings. In particular, a new private learning technique called embedding clipping is introduced and used in all the three settings to ensure differential privacy. For the LFL setting, we combine differential privacy with secure aggregation to protect the communication between user devices and the server with a strength similar to the local differential privacy model, but much better accuracy. We perform experiments to demonstrate the effectiveness of our approaches. 
    more » « less
  3. Deep learning models are prone to forgetting information learned in the past when trained on new data. This problem becomes even more pronounced in the context of federated learning (FL), where data is decentralized and subject to independent changes for each user. Continual Learning (CL) studies this so-called \textit{catastrophic forgetting} phenomenon primarily in centralized settings, where the learner has direct access to the complete training dataset. However, applying CL techniques to FL is not straightforward due to privacy concerns and resource limitations. This paper presents a framework for federated class incremental learning that utilizes a generative model to synthesize samples from past distributions instead of storing part of past data. Then, clients can leverage the generative model to mitigate catastrophic forgetting locally. The generative model is trained on the server using data-free methods at the end of each task without requesting data from clients. Therefore, it reduces the risk of data leakage as opposed to training it on the client's private data. We demonstrate significant improvements for the CIFAR-100 dataset compared to existing baselines. 
    more » « less
  4. We consider the problem of predicting cellular network performance (signal maps) from measurements collected by several mobile devices. We formulate the problem within the online federated learning framework: (i) federated learning (FL) enables users to collaboratively train a model, while keeping their training data on their devices; (ii) measurements are collected as users move around over time and are used for local training in an online fashion. We consider an honest-but-curious server, who observes the updates from target users participating in FL and infers their location using a deep leakage from gradients (DLG) type of attack, originally developed to reconstruct training data of DNN image classifiers. We make the key observation that a DLG attack, applied to our setting, infers the average location of a batch of local data, and can thus be used to reconstruct the target users' trajectory at a coarse granularity. We build on this observation to protect location privacy, in our setting, by revisiting and designing mechanisms within the federated learning framework including: tuning the FL parameters for averaging, curating local batches so as to mislead the DLG attacker, and aggregating across multiple users with different trajectories. We evaluate the performance of our algorithms through both analysis and simulation based on real-world mobile datasets, and we show that they achieve a good privacy-utility tradeoff. 
    more » « less
  5. The daily activities performed by a disabled or elderly person can be monitored by a smart environment, and the acquired data can be used to learn a predictive model of user behavior. To speed up the learning, several researchers designed collaborative learning systems that use data from multiple users. However, disclosing the daily activities of an elderly or disabled user raises privacy concerns. In this paper, we use state-of-the-art deep neural networkbased techniques to learn predictive human activity models in the local, centralized, and federated learning settings. A novel aspect of our work is that we carefully track the temporal evolution of the data available to the learner and the data shared by the user. In contrast to previous work where users shared all their data with the centralized learner, we consider users that aim to preserve their privacy. Thus, they choose between approaches in order to achieve their goals of predictive accuracy while minimizing the shared data. To help users make decisions before disclosing any data, we use machine learning to predict the degree to which a user would benefit from collaborative learning. We validate our approaches on real-world data 
    more » « less