To date, the quantum anomalous Hall effect has been realized in chromium (Cr)- and/or vanadium(V)-doped topological insulator (Bi,Sb)2Te3 thin films. In this work, we use molecular beam epitaxy to synthesize both V- and Cr-doped Bi2Te3 thin films with controlled dopant concentration. By performing magneto-transport measurements, we find that both systems show an unusual yet similar ferromagnetic response with respect to magnetic dopant concentration; specifically the Curie temperature does not increase monotonically but shows a local maximum at a critical dopant concentration. We attribute this unusual ferromagnetic response observed in Cr/V-doped Bi2Te3 thin films to the dopant-concentration-induced magnetic exchange interaction, which displays evolution from van Vleck-type ferromagnetism in a nontrivial magnetic topological insulator to Ruderman–Kittel–Kasuya–Yosida (RKKY)-type ferromagnetism in a trivial diluted magnetic semiconductor. Our work provides insights into the ferromagnetic properties of magnetically doped topological insulator thin films and facilitates the pursuit of high-temperature quantum anomalous Hall effect.
more »
« less
Band Topology of Bismuth Quantum Films
Bismuth has been the key element in the discovery and development of topological insulator materials. Previous theoretical studies indicated that Bi is topologically trivial and it can transform into the topological phase by alloying with Sb. However, recent high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements strongly suggested a topological band structure in pure Bi, conflicting with the theoretical results. To address this issue, we studied the band structure of Bi and Sb films by ARPES and first-principles calculations. The quantum confinement effectively enlarges the energy gap in the band structure of Bi films and enables a direct visualization of the Z 2 topological invariant of Bi. We find that Bi quantum films in topologically trivial and nontrivial phases respond differently to surface perturbations. This way, we establish experimental criteria for detecting the band topology of Bi by spectroscopic methods.
more »
« less
- PAR ID:
- 10133278
- Date Published:
- Journal Name:
- Crystals
- Volume:
- 9
- Issue:
- 10
- ISSN:
- 2073-4352
- Page Range / eLocation ID:
- 510
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Topology and disorder have a rich combined influence on quantum transport. To probe their interplay, we synthesized one-dimensional chiral symmetric wires with controllable disorder via spectroscopic Hamiltonian engineering, based on the laser-driven coupling of discrete momentum states of ultracold atoms. Measuring the bulk evolution of a topological indicator after a sudden quench, we observed the topological Anderson insulator phase, in which added disorder drives the band structure of a wire from topologically trivial to nontrivial. In addition, we observed the robustness of topologically nontrivial wires to weak disorder and measured the transition to a trivial phase in the presence of strong disorder. Atomic interactions in this quantum simulation platform may enable realizations of strongly interacting topological fluids.more » « less
-
Abstract While ∼30% of materials are reported to be topological, topological insulators are rare. Magnetic topological insulators (MTI) are even harder to find. Identifying crystallographic features that can host the coexistence of a topological insulating phase with magnetic order is vital for finding intrinsic MTI materials. Thus far, most materials that are investigated for the determination of an MTI are some combination of known topological insulators with a magnetic ion such as MnBi2Te4. Motivated by the recent success of EuIn2As2, the role of chemical pressure on topologically trivial insulator is investigated, Eu5In2Sb6via Ga substitution. Eu5Ga2Sb6is predicted to be topological but is synthetically difficult to stabilize. The intermediate compositions between Eu5In2Sb6and Eu5Ga2Sb6are observed through theoretical works to explore a topological phase transition and band inversion mechanism. The band inversion mechanism is attributed to changes in Eu–Sb hybridization as Ga is substituted for In due to chemical pressure. Eu5In4/3Ga2/3Sb6is also synthesized, the highest Ga concentration in Eu5In2‐xGaxSb6, and report the thermodynamic, magnetic, transport, and Hall properties. Overall, the work paints a picture of a possible MTI via band engineering and explains why Eu‐based Zintl compounds are suitable for the co‐existence of magnetism and topology.more » « less
-
null (Ed.)In this article, we provide a pedagogical review of the theory of topological quantum chemistry and topological crystalline insulators. We begin with an overview of the properties of crystal symmetry groups in position and momentum space. Next, we introduce the concept of a band representation, which quantifies the symmetry of topologically trivial band structures. By combining band representations with symmetry constraints on the connectivity of bands in momentum space, we show how topologically nontrivial bands can be cataloged and classified. We present several examples of new topological phases discovered using this paradigm and conclude with an outlook toward future developments.more » « less
-
Topological band theory has achieved great success in the high-throughput search for topological band structures both in paramagnetic and magnetic crystal materials. However, a significant proportion of materials are topologically trivial insulators at the Fermi level. In this paper, we show that, remarkably, for a subset of the topologically trivial insulators, knowing only their electron number and the Wyckoff positions of the atoms we can separate them into two groups: the obstructed atomic insulator (OAI) and the atomic insulator (AI). The interesting group, the OAI, have a center of charge not localized on the atoms. Using the theory of topological quantum chemistry, in this work we first derive the necessary and sufficient conditions for a topologically trivial insulator to be a filling enforced obstructed atomic insulator (feOAI) in the 1651 Shubnikov space groups. Remarkably, the filling enforced criteria enable the identification of obstructed atomic bands without knowing the representations of the band structures. Hence, no calculations are needed for the filling enforced criteria, although they are needed to obtain the band gaps. With the help of the Topological Quantum Chemistry website, we have performed a high-throughput search for feOAIs and have found that 957 ICSD entries (638 unique materials) are paramagnetic feOAIs, among which 738 (475) materials have an indirect gap. The metallic obstructed surface states of feOAIs are also showcased by several material examples. Published by the American Physical Society2024more » « less
An official website of the United States government

