skip to main content


Search for: All records

Award ID contains: 1709945

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Two-dimensional (2D) Dirac-like electron gases have attracted tremendous research interest ever since the discovery of free-standing graphene. The linear energy dispersion and nontrivial Berry phase play a pivotal role in the electronic, optical, mechanical, and chemical properties of 2D Dirac materials. The known 2D Dirac materials are gapless only within certain approximations, for example, in the absence of spin–orbit coupling (SOC). Here, we report a route to establishing robust Dirac cones in 2D materials with nonsymmorphic crystal lattice. The nonsymmorphic symmetry enforces Dirac-like band dispersions around certain high-symmetry momenta in the presence of SOC. Through μ-ARPES measurements, we observe Dirac-like band dispersions in α-bismuthene. The nonsymmorphic lattice symmetry is confirmed by μ-low-energy electron diffraction and scanning tunneling microscopy. Our first-principles simulations and theoretical topological analysis demonstrate the correspondence between nonsymmorphic symmetry and Dirac states. This mechanism can be straightforwardly generalized to other nonsymmorphic materials. The results enlighten the search of symmetry-enforced Dirac fermions in the vast uncharted world of nonsymmorphic 2D materials. 
    more » « less
  3. Bismuth has been the key element in the discovery and development of topological insulator materials. Previous theoretical studies indicated that Bi is topologically trivial and it can transform into the topological phase by alloying with Sb. However, recent high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements strongly suggested a topological band structure in pure Bi, conflicting with the theoretical results. To address this issue, we studied the band structure of Bi and Sb films by ARPES and first-principles calculations. The quantum confinement effectively enlarges the energy gap in the band structure of Bi films and enables a direct visualization of the Z 2 topological invariant of Bi. We find that Bi quantum films in topologically trivial and nontrivial phases respond differently to surface perturbations. This way, we establish experimental criteria for detecting the band topology of Bi by spectroscopic methods. 
    more » « less