Abstract The circular dichroism (CD) of photoelectrons generated by near-infrared (NIR) laser pulses using multiphoton ionization of excited He+ions in the 3p(m= +1) state is investigated. The ions were prepared by circularly polarized extreme ultraviolet (XUV) pulses. For circularly polarized NIR pulses co- and counter-rotating relative to the polarization of the XUV pulse, a complex variation of the CD is observed as a result of intensity- and polarization-dependent Freeman resonances, with and without additional dichroic AC-Stark shifts. The experimental results are compared with numerical solutions of the time-dependent Schrödinger equation to identify and interpret the pronounced variation of the experimentally observed CD.
more »
« less
Constant intensity conical diffraction in discrete one-dimensional lattices with charge-conjugation symmetry
We engineer anomalous conical diffraction (CD), occurring in discrete one-dimensional lattices with charge-conjugation symmetry when an exceptional point is in the proximity of the modes that compose the initial excitation. The evolving waveform propagates ballistically, acquiring aconstantintensity profile within the boundaries of the spreading cone. The linear increase in the total intensity along the propagation direction is responsible for the generation of constant intensity CD.
more »
« less
- Award ID(s):
- 1641109
- PAR ID:
- 10133390
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 45
- Issue:
- 1
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 101
- Size(s):
- Article No. 101
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Aluminum (Al)‐bearing and iron (Fe)‐bearing minerals, especially short‐range‐ordered (SRO) phases, are thought to protect soil organic C (SOC). However, it remains methodologically challenging to assess the influence of Al vs. Fe minerals or metal complexes. Whereas SRO Al and Fe phases share some properties, Al dissolved by oxalate (Alox) often correlates stronger with SOC than Fe dissolved by oxalate (Feox) or citrate–dithionite (Fecd). To further evaluate these relationships, we analyzed a large North American soil dataset from the National Ecological Observatory Network. A strong relationship between Aloxand SOC (and weaker Feox‐SOC relationship) persisted even after excluding soils rich in SRO minerals (Andisols and Spodosols). Al dissolved by oxalate was strongly correlated with citrate–dithionite‐extractable Al (Alcd; slope = 0.92,R2 = .69), and discrepancies could be explained (R2 = .87) by greater dissolution of Al‐substituted Fe phases by citrate–dithionite and greater dissolution of aluminosilicates by oxalate. Aluminum dissolved by oxalate and Alcdwere both strong SOC predictors despite their differing relationships with silicon (Si). Al dissolved by oxalate and Sioxstrongly covaried (R2 = .79), but Alcdwas inconsistently related to Sicd(R2 = .18). Similar relationships of Aloxand Alcdwith SOC, despite differences in minerals extracted by oxalate and citrate–dithionite, suggest that Al‐OC complexes (as opposed to aluminosilicate or iron‐bearing minerals) were the best SOC predictor. This raises important questions: do Al‐OC complexes indicate protection from decomposition or simply reflect greater intensity of mineral weathering by organic acids; and, if the latter, then perhaps SOC input is driving Aloxand SOC correlations rather than Al phase composition or abundance.more » « less
-
Numerical experiments using the WRF model were conducted to analyze the sensitivity of Typhoon Mangkhut intensification simulations to seven widely used planetary boundary layer (PBL) parameterization schemes, including YSU, MYJ, QNSE, MYNN2, MYNN3, ACM2, and BouLac. The results showed that all simulations generally reproduced the tropical cyclone (TC) track and intensity, with YSU, QNSE, and BouLac schemes better capturing intensification processes and closely matching observed TC intensity. In terms of surface layer parameterization, the QNSE scheme produced the highest Ck/Cd ratio, resulting in stronger TC intensity based on Emanuel’s potential intensity theory. In terms of PBL parameterization, the YSU and BouLac schemes, with the same revised MM5 surface layer scheme, simulated weaker turbulent diffusivity Km and shallower mixing height, leading to stronger TC intensity. During the intensification period, the BouLac, YSU, and QNSE PBL schemes exhibited stronger tangential wind, radial inflow within the boundary layer, and updraft around the eye wall, consistent with TC intensity results. Both PBL and surface layer parameterization significantly influenced simulated TC intensity. The QNSE scheme, with the largest Ck/Cd ratio, and the YSU and BouLac schemes, with weaker turbulent diffusivity, generated stronger radial inflow, updraft, and warm core structures, contributing to higher storm intensity.more » « less
-
Abstract We report a feasible method to control self‐recognition during the self‐assembly of a hydrophilic macroion, phosphate‐functionalized γ‐cyclodextrin (γ‐CD‐P), though host‐guest interactions. We confirmed that γ‐CD‐P can form a host‐guest complex with a super‐chaotropic anion, namely the B12F122−borate cluster, by using NMR spectroscopy and isothermal titration calorimetry. The loaded γ‐CD‐P, which has a higher charge density, can be distinguished from the uncomplexed γ‐CD‐P, leading to self‐sorting behavior during the self‐assembly process, confirmed by the formation of two types of individual supramolecular structures (Rhof ca. 57 nm and 18 nm, determined by light scattering) instead of hybrid structures in mixed dilute solution. This self‐recognition behavior is accounted for by the difference in intermolecular electrostatic interactions arising from the loading.more » « less
-
Abstract To successfully navigate their surroundings, animals detect and orient to environmental stimuli possessing unique physical properties. Most animals can derive directional information from spatial or temporal changes in stimulus intensity (e.g. chemo- and thermo-taxis). However, some biologically relevant stimuli have constant intensity at most organismal scales. The gravitational and magnetic fields of the earth are examples of uniform stimuli that remain constant at most relevant scales. While devoid of information associated with intensity changes, the vectorial nature of these fields intrinsically encodes directional information. While much is known about behavioral strategies that exploit changes in stimulus intensity (gradients), less is understood about orientation to uniform stimuli. Nowhere is this truer than with magnetic orientation. While many organisms are known to orient to the magnetic field of the earth, how these animals extract information from the earth’s magnetic field remains unresolved. Here we use the nematodeC. elegansto investigate behavioral strategies for orientation to magnetic fields, and compare our findings to the better characterized chemical and thermal orientation strategies. We used an unbiased cluster analysis to categorize, quantify, and compare behavioral components underlying different orientation strategies as a way to quantify and compare animal orientation to distinct stimuli. We find that in the presence of an earth-like magnetic field, worms perform acute angle turns (140-171°) that significantly improved their alignment with the direction of an imposed magnetic vector. In contrast, animals performed high amplitude turns (46-82°) that significantly increased alignment of their trajectory with the preferred migratory angle. We conclude thatC. elegansorients to earth-strength magnetic fields using two independent behavioral strategies, in contrast to orientation strategies to graded stimuli. Understanding howC. elegansdetects and orients to magnetic fields will provide useful insight into how many species across taxa accomplish this fascinating sensory feat.more » « less
An official website of the United States government
