skip to main content


Title: The Magnitude of Surface Ocean Acidification and Carbon Release During Eocene Thermal Maximum 2 (ETM‐2) and the Paleocene‐Eocene Thermal Maximum (PETM)
Award ID(s):
1658023 1658017 1657848
NSF-PAR ID:
10133522
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
35
Issue:
2
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Accurate estimates of past global mean surface temperature (GMST) help tocontextualise future climate change and are required to estimate thesensitivity of the climate system to CO2 forcing through Earth's history.Previous GMST estimates for the latest Paleocene and early Eocene(∼57 to 48 million years ago) span a wide range(∼9 to 23 ∘C higher than pre-industrial) andprevent an accurate assessment of climate sensitivity during this extremegreenhouse climate interval. Using the most recent data compilations, weemploy a multi-method experimental framework to calculate GMST during thethree DeepMIP target intervals: (1) the latest Paleocene (∼57 Ma), (2) the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma), and (3) the earlyEocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six differentmethodologies, we find that the average GMST estimate (66 % confidence)during the latest Paleocene, PETM, and EECO was 26.3 ∘C (22.3 to28.3 ∘C), 31.6 ∘C (27.2 to 34.5 ∘C), and27.0 ∘C (23.2 to 29.7 ∘C), respectively. GMST estimatesfrom the EECO are ∼10 to 16 ∘C warmer thanpre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5thAssessment Report (9 to 14 ∘C higher than pre-industrial).Leveraging the large “signal” associated with these extreme warm climates,we combine estimates of GMST and CO2 from the latest Paleocene, PETM,and EECO to calculate gross estimates of the average climate sensitivitybetween the early Paleogene and today. We demonstrate that “bulk”equilibrium climate sensitivity (ECS; 66 % confidence) during the latestPaleocene, PETM, and EECO is 4.5 ∘C (2.4 to 6.8 ∘C),3.6 ∘C (2.3 to 4.7 ∘C), and 3.1 ∘C (1.8 to4.4 ∘C) per doubling of CO2. These values are generallysimilar to those assessed by the IPCC (1.5 to 4.5 ∘C per doublingCO2) but appear incompatible with low ECS values (<1.5 perdoubling CO2). 
    more » « less
  2. Abstract

    The Paleocene‐Eocene Thermal Maximum (PETM) is the most pronounced global warming event of the early Paleogene related to atmospheric CO2increases. It is characterized by negative δ18O and δ13C excursions recorded in sedimentary archives and a transient disruption of the marine biosphere. Sites from the U.S. Atlantic Coastal Plain show an additional small, but distinct δ13C excursion below the onset of the PETM, coined the “pre‐onset excursion” (POE), mimicking the PETM‐forced environmental perturbations. This study focuses on the South Dover Bridge core in Maryland, where the Paleocene‐Eocene transition is stratigraphically constrained by calcareous nannoplankton and stable isotope data, and in which the POE is well‐expressed. The site was situated in a middle neritic marine shelf setting near a major outflow of the paleo‐Potomac River system. We generated high‐resolution benthic foraminiferal assemblage, stable isotope, trace‐metal, grain‐size and clay mineralogy data. The resulting stratigraphic subdivision of this Paleocene‐Eocene transition is placed within a depth transect across the paleoshelf, highlighting that the PETM sequence is relatively expanded. The geochemical records provide detailed insights into the paleoenvironment, developing from a well‐oxygenated water column in latest Paleocene to a PETM‐ecosystem under severe biotic stress‐conditions, with shifts in food supply and temperature, and under dysoxic bottom waters in a more river‐dominated setting. Environmental changes started in the latest Paleocene and culminated atthe onset of the PETM, hinting to an intensifying trigger rather than to an instantaneous event at the Paleocene‐Eocene boundary toppling the global system.

     
    more » « less