skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Crystal structure of bromido­penta­kis­(tetra­hydro­furan-κO)magnesium bis­[1,2-bis­(di­phenyl­phosphan­yl)benzene-κ2P,P′]cobaltate(−1) tetra­hydro­furan disolvate
Structural characterization of the ionic title complex, [MgBr(THF)5][Co(dpbz)2]·2THF [THF is tetra­hydro­furan, C4H8O; dpbz is 1,2-bis­(di­phenyl­phosphan­yl)benzene, C30H24P2], revealed a well-separated cation and anion co-crystallized with two THF solvent mol­ecules that inter­act with the cation via weak C—H...O contacts. The geometry about the cobalt center is pseudo­tetra­hedral, as is expected for a d10 metal center, only deviating from an ideal tetra­hedral geometry because of the restrictive bite angles of the bidentate phosphane ligands. Three THF ligands of the cation and one co-crystallized THF solvent mol­ecule are each disordered over two orientations. In the extended structure, the cations and THF solvent mol­ecules are arranged in (100) sheets that alternate with layers of anions, the latter of which show various π-inter­actions, which may explain the particular packing arrangement.  more » « less
Award ID(s):
1649228
PAR ID:
10133583
Author(s) / Creator(s):
Date Published:
Journal Name:
Acta crystallographica
Volume:
75
Issue:
2
ISSN:
2056-9890
Page Range / eLocation ID:
304-307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural characterization of the ionic title complex, [MgBr(THF) 5 ][Co(dpbz) 2 ]·2THF [THF is tetrahydrofuran, C 4 H 8 O; dpbz is 1,2-bis(diphenylphosphanyl)benzene, C 30 H 24 P 2 ], revealed a well-separated cation and anion co-crystallized with two THF solvent molecules that interact with the cation via weak C—H...O contacts. The geometry about the cobalt center is pseudotetrahedral, as is expected for a d 10 metal center, only deviating from an ideal tetrahedral geometry because of the restrictive bite angles of the bidentate phosphane ligands. Three THF ligands of the cation and one co-crystallized THF solvent molecule are each disordered over two orientations. In the extended structure, the cations and THF solvent molecules are arranged in (100) sheets that alternate with layers of anions, the latter of which show various π-interactions, which may explain the particular packing arrangement. 
    more » « less
  2. null (Ed.)
    Fe(II) coordination complexes with ligands of an intermediate field strength often show witching between the high-spin (HS) and low-spin (LS) electronic configurations, known as spin crossover (SCO). This spin-state conversion is achieved by changes in temperature, pressure, or photoexcitation, which make SCO complexes promising materials for various applications that rely on bistable systems. Multifunctional materials that exhibit both spin-state switching and conductivity can be created by combining Fe(II) SCO complexes with organic TCNQ-type electron acceptors. In such complexes, TCNQ●d– radical anions are typically arranged in layers of one-dimensional stacks that provide conducting pathways (Fig. 1). The stacking distance can be affected by structural changes induced by the alteration in the electronic configuration and, thus, bond lengths at the Fe(II) center, resulting in synergy between SCO and conductivity. The synthesis of such materials can be approached in two ways: (1) by coordinating TCNQ●d– ligands directly to the Fe(II) center, which is partially protected by blocking ligands that limit the growth of extended structures or (2) by co-crystallizing completely blocked Fe(II) centers with free TCNQ●d– radicals. We will discuss several examples of the second approach, in which homoleptic Fe(II) cationic SCO complexes with tridentate 2,6-bispyrazolyl-pyridine (bpp) type ligands have been co-crystallized with fractionally-charged TCNQ●d– radical anions. The temperature- and solvent-dependent magnetic behavior and transport properties of these materials will be discussed. We will also present new pathways to improve the design of such molecule-based conductors with spin-state switching properties. To the best of out knowledge, we report the first examples of Fe(II) based conducting molecular materials with abrupt temperature-driven spin transitions. 
    more » « less
  3. The title compound, bis(1,2-diphenyl-2-sulfanylideneethanethiolato-κ 2 S , S ′)(1,3,5-triaza-7-phosphaadamantane-κ P )cobalt(II) dichloromethane hemisolvate, [Co(pdt) 2 (PTA)]·0.5C 2 H 4 Cl 2 or [Co(C 14 H 10 S 2 ) 2 (C 6 H 12 N 3 P)]·0.5C 2 H 4 Cl 2 , contains two phenyldithiolene (pdt) ligands and a 1,3,5-triaza-7-phosphaadamantane (PTA) ligand bound to cobalt with the solvent 1,2-dichloroethane molecule located on an inversion center. The cobalt core exhibits an approximately square-pyramidal geometry with partially reduced thienyl radical monoanionic ligands. The supramolecular network is consolidated by hydrogen-bonding interactions primarily with nitrogen, sulfur and chlorine atoms, as well as parallel displaced π-stacking of the aryl rings. The UV–vis, IR, and CV data are also consistent with monoanionic dithiolene ligands and an overall Co II oxidation state. 
    more » « less
  4. The 3d transition metal (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes, supported by anions of sterically demanding β-diketones, 1,3-dimesitylpropane-1,3-dione (HLMes) and 1,3-bis(3,5-bis(trifluoromethyl)phenyl)-3-hydroxyprop-2-en-1-one (HLCF3), were synthesized and evaluated for their antitumor activity. To assess the biological effects of substituents on phenyl moieties, we also synthesized and investigated the analogous metal(II) complexes of the anion of the less bulky 1,3-diphenylpropane-1,3-dione (HLPh) ligand. The compounds [Cu(LCF3)2], [Cu(LMes)2] and ([Zn(LMes)2]) were characterized by X-ray crystallography. The [Cu(LCF3)2] crystallizes with an apical molecule of solvent (THF) and features a rare square pyramidal geometry at the Cu(II) center. The copper(II) and zinc(II) complexes of diketonate ligands, derived from the deprotonated 1,3-dimesitylpropane-1,3-dione (HLMes), adopt a square planar or a tetrahedral geometry at the metal, respectively. We evaluated the antitumor properties of the newly synthesized (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes against a series of human tumor cell lines derived from different solid tumors. Except for iron derivatives, cellular studies revealed noteworthy antitumor properties, even towards cancer cells endowed with poor sensitivity to the reference drug cisplatin. 
    more » « less
  5. Abstract Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],1, as well as [K(crypt)][Cp*2NdCl2],2, and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3, was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4. Attempts to make4from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5, which allows direct comparison with the bimetallic Eu(II) complex4. Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6, or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a, depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a. In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9. The (bipy)1−ligands of9are arranged in a parallel orientation, as observed in the structure of3, except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10. 
    more » « less