Abstract Recently, Yohe and Krell (The Anatomical Record, vol. 306:2765–2780) lamented the incongruence between genetics and morphology in the vomeronasal system of bats. Here, we studied 105 bat species from 19 families using histology, iodine‐enhanced computed tomography (CT), and/or micro‐CT. We focused on structural elements that support a functional peripheral vomeronasal receptor organ (vomeronasal organ [VNO]), together comprising the “vomeronasal complex.” Our results support prior studies that describe a functional VNO in most phyllostomid bats, miniopterids, and some mormoopids (most knownPteronotusspp.). All of these species (or congeners, at least) have vomeronasal nerves connecting the VNO with the brain and some intact genes related to a functional VNO. However, some bats have VNOs that lack a neuroepithelium and yet still possess elements that aid VNO function, such as a “capsular” morphology of the vomeronasal cartilages (VNCs), and even large venous sinuses, which together facilitate a vasomotor pump mechanism that can draw fluid into the VNO. We also show that ostensibly functionless VNOs of some bats are developmentally associated with ganglionic masses, perhaps involved in endocrine pathways. Finally, we demonstrate that the capsular VNC articulates with the premaxilla or maxilla, and that these bones bear visible grooves denoting the location of the VNC. Since these paraseptal grooves are absent in bats that have simpler (bar‐shaped or curved) VNCs, this trait could be useful in fossil studies. Variable retention of some but not all “functional” elements of the vomeronasal complex suggests diverse mechanisms of VNO loss among some bat lineages.
more »
« less
Expressed Vomeronasal Type-1 Receptors (V1rs) in Bats Uncover Conserved Sequences Underlying Social Chemical Signaling
Abstract In mammals, social and reproductive behaviors are mediated by chemical cues encoded by hyperdiverse families of receptors expressed in the vomeronasal organ. Between species, the number of intact receptors can vary by orders of magnitude. However, the evolutionary processes behind variation in receptor number, and its link to fitness-related behaviors are not well understood. From vomeronasal transcriptomes, we discovered the first evidence of intact vomeronasal type-1 receptor (V1r) genes in bats, and we tested whether putatively functional bat receptors were orthologous to those of related taxa, or whether bats have evolved novel receptors. Instead of lineage-specific duplications, we found that bat V1rs show high levels of orthology to those of their relatives, and receptors are under comparative levels of purifying selection as non-bats. Despite widespread vomeronasal organ loss in bats, V1r copies have been retained for >65 million years. The highly conserved nature of bat V1rs challenges our current understanding of mammalian V1r function and suggests roles other than conspecific recognition or mating initiation in social behavior.
more »
« less
- PAR ID:
- 10133635
- Date Published:
- Journal Name:
- Genome Biology and Evolution
- Volume:
- 11
- Issue:
- 10
- ISSN:
- 1759-6653
- Page Range / eLocation ID:
- 2741 to 2749
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Matsunami, Hiroaki (Ed.)Ethologically relevant chemical senses and behavioral habits are likely to coadapt in response to selection. As olfaction is involved in intrinsically motivated behaviors in mice, we hypothesized that selective breeding for a voluntary behavior would enable us to identify novel roles of the chemosensory system. Voluntary wheel running (VWR) is an intrinsically motivated and naturally rewarding behavior, and even wild mice run on a wheel placed in nature. We have established 4 independent, artificially evolved mouse lines by selectively breeding individuals showing high VWR activity (High Runners; HRs), together with 4 non-selected Control lines, over 88 generations. We found that several sensory receptors in specific receptor clusters were differentially expressed between the vomeronasal organ (VNO) of HRs and Controls. Moreover, one of those clusters contains multiple single-nucleotide polymorphism loci for which the allele frequencies were significantly divergent between the HR and Control lines, i.e., loci that were affected by the selective breeding protocol. These results indicate that the VNO has become genetically differentiated between HR and Control lines during the selective breeding process. Although the role of the vomeronasal chemosensory receptors in VWR activity remains to be determined, the current results suggest that these vomeronasal chemosensory receptors are important quantitative trait loci for voluntary exercise in mice. We propose that olfaction may play an important role in motivation for voluntary exercise in mammals.more » « less
-
As human activities continue to negatively affect bat populations, bat conservation efforts continue to rely on questionnaires to understand human actions toward bats; however, the use of questionnaires constrains understanding by limiting the sample size to those who choose to participate, being subject to selection bias, and overall may not be the most efficient way of understanding sentiments and behaviors toward bats. We used social media to analyze sentiment toward bat exploitation behaviors in Asia and evaluated the influence that these posts have on users in the region. We gathered and analyzed a total of 458 social media posts and 2,427 comments throughout Asia utilizing keywords and hashtags in 16 languages. We found that nearly 90% of initial posts discussing bat exploitations were discussed in an acceptive, pro-bat exploitation way. Initial posts from Southeast and South Asia showed acceptance of bat exploitation. Comments on posts from Southeast Asia, particularly the Philippines and Indonesia, were acceptive of bat exploitation for food and medicine, whereas comments on posts from South Asia were rejective of bat exploitation, in contrast, with the initial South Asian posts, which were more acceptive of persecution of bats. We recommend using social media platforms to promote messages that reject bat exploitation and encourage bat conservation efforts as our results indicate that positive messages receive mostly positive comments, reinforcing the importance of protecting bats. Moreover, we suggest future work be conducted using social media to further understand region-specific narratives for and against bat exploitation.more » « less
-
Abstract The extensive diversity observed in bat nasal chemosensory systems has been well‐documented at the histological level. Understanding how this diversity evolved and developing hypotheses as to why particular patterns exist require a phylogenetic perspective, which was first outlined in the work of anatomist Kunwar Bhatnagar. With the onset of genetics and genomics, it might be assumed that the puzzling patterns observed in the morphological data have been clarified. However, there is still a widespread mismatch of genetic and morphological correlations among bat chemosensory systems. Novel genomic evidence has set up new avenues to explore that demand more evidence from anatomical structures. Here, we outline the progress that has been made in both morphological and molecular studies on the olfactory and vomeronasal systems in bats since the work of Bhatnagar. Genomic data of olfactory and vomeronasal receptors demonstrate the strong need for further morphological sampling, with a particular focus on receiving brain regions, glands, and ducts.more » « less
-
null (Ed.)Abstract Mammalian olfactory receptor genes (ORs) are a diverse family of genes encoding proteins that directly interact with environmental chemical cues. ORs evolve via gene duplication in a birth-death fashion, neofunctionalizing and pseudogenizing over time. Olfaction is a primary sense used for food detection in plant-visiting bats, but the relationship between dietary specialization and OR repertoire diversity is unclear. Within neotropical Leaf-nosed bats (Phyllostomidae), many lineages are plant specialists, and some have a distinct OR repertoire compared to insectivorous species. Yet, whether specialization on particular plant genera is associated with the evolution of specialized, less diverse OR repertoires has never been tested. Using targeted sequence capture, we sequenced the OR repertoires of three sympatric species of short-tailed fruit bats (Carollia), which vary in their degree of specialization on the fruits of Piper plants. We characterized orthologous vs duplicated receptors among Carollia species, and explored the diversity and redundancy of the receptor gene repertoire. At the species level, the most dedicated Piper specialist, Carollia castanea, had lower OR diversity compared to the two generalists (C. sowelli and C. perspicillata), but we discovered a few unique sets of ORs within C. castanea with high redundancy of similar gene duplicates. These unique receptors potentially enable C. castanea to detect Piper fruit odorants better than its two congeners. Carollia perspicillata, the species with the most generalist diet, had a higher diversity of intact receptors, suggesting the ability to detect a wider range of odorant molecules. Variation among ORs may be a factor in the coexistence of these sympatric species, facilitating the exploitation of different plant resources. Our study sheds light on how gene duplication and changes in OR diversity may play a role in dietary adaptations and underlie ecological interactions between bats and plants.more » « less
An official website of the United States government

