skip to main content

Title: River channel width controls blocking by slow-moving landslides in California's Franciscan mélange
Abstract. To explore the sensitivity of rivers to blocking from landslidedebris, we exploit two similar geomorphic settings in California'sFranciscan mélange where slow-moving landslides, often referred to asearthflows, impinge on river channels with drainage areas that differ by afactor of 30. Analysis of valley widths and river long profiles over∼19 km of Alameda Creek (185 km2 drainage area) andArroyo Hondo (200 km2 drainage area) in central California shows avery consistent picture in which earthflows that intersect these channelsforce tens of meters of gravel aggradation for kilometers upstream, leadingto apparently long-lived sediment storage and channel burial at these sites.In contrast, over a ∼30 km section of the Eel River (5547 km2 drainage area), there are no knickpoints or aggradation upstreamof locations where earthflows impinge on its channel. Hydraulic andhydrologic data from United States Geological Survey (USGS) gages on Arroyo Hondo and the Eel River, combinedwith measured size distributions of boulders input by landslides for bothlocations, suggest that landslide derived boulders are not mobile at eithersite during the largest floods (>2-year recurrence) with field-measured flow depths. We therefore argue that boulder transport capacity isan unlikely explanation for the observed difference in sensitivity tolandslide inputs. At the same time, we find that earthflow fluxes per unitchannel width are nearly more » identical for Oak Ridge earthflow on Arroyo Hondo,where evidence for blocking is clear, and for the Boulder Creek earthflow onthe Eel River, where evidence for blocking is absent. These observationssuggest that boulder supply is also an unlikely explanation for the observedmorphological differences along the two rivers. Instead, we argue that thedramatically different sensitivity of the two locations to landslideblocking is related to differences in channel width relative to typicalseasonal displacements of earthflows. A synthesis of seasonal earthflowdisplacements in the Franciscan mélange shows that the channel width ofthe Eel River is ∼5 times larger than the largest annualseasonal displacement. In contrast, during wet winters, earthflows arecapable of crossing the entire channel width of Arroyo Hondo and AlamedaCreek. In support of this interpretation, satellite imagery shows thatimmobile earthflow-derived boulders are generally confined to the edges ofthe channel on the Eel River. By contrast, immobile earthflow-derivedboulders jam the entire channel on Arroyo Hondo. Our results imply that lower drainage area reaches of earthflow-dominated catchments may be particularly prone to blocking. By inhibiting the upstreampropagation of base-level signals, valley-blocking earthflows may thereforepromote the formation of so-called “relict topography”. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Earth Surface Dynamics
Page Range or eLocation-ID:
879 to 894
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The width of valleys and channels affects the hydrology, ecology,and geomorphic functionality of drainage networks. In many studies, thewidth of valleys and/or channels (W) is estimated as a power-law function ofthe drainage area (A), W=kcAd. However, in fluvial systemsthat experience drainage reorganization, abrupt changes in drainage areadistribution can result in valley or channel widths that are disproportionalto their drainage areas. Such disproportionality may be more distinguishedin valleys than in channels due to a longer adjustment timescale forvalleys. Therefore, the valley width–area scaling in reorganized drainagesis expected to deviate from that of drainages that did not experiencereorganization. To explore the effect of reorganization on valley width–drainage areascaling, we studied 12 valley sections in the Negev desert, Israel,categorized into undisturbed, beheaded, and reversed valleys. We found thatthe values of the drainage area exponents, d, are lower in the beheadedvalleys relative to undisturbed valleys but remain positive. Reversedvalleys, in contrast, are characterized by negative d exponents, indicatingvalley narrowing with increasing drainage area. In the reversed category, wealso explored the independent effect of channel slope (S) through theequation W=kbAbSc, which yieldednegative and overall similar values for b and c. A detailed study in one reversed valley section shows that the valleynarrows downstream, whereasmore »the channel widens, suggesting that, ashypothesized, the channel width adjusts faster to post-reorganizationdrainage area distribution. The adjusted narrow channel dictates the widthof formative flows in the reversed valley, which contrasts with the meaningfullywider formative flows of the beheaded valley across the divide. Thisdifference results in a step change in the unit stream power between thereversed and beheaded channels, potentially leading to a “width feedback”that promotes ongoing divide migration and reorganization. Our findings demonstrate that valley width–area scaling is a potential toolfor identifying landscapes influenced by drainage reorganization. Accountingfor reorganization-specific scaling can improve estimations of erosion ratedistributions in reorganized landscapes.« less
  2. Tens of thousands of landslides were generated over 10,000 km2 of North Canterbury and Marlborough as a consequence of the 14 November 2016, Mw7.8 Kaikōura Earthquake. The most intense landslide damage was concentrated in 3500 km2 around the areas of fault rupture. Given the sparsely populated area affected by landslides, only a few homes were impacted and there were no recorded deaths due to landslides. Landslides caused major disruption with all road and rail links with Kaikōura being severed. The landslides affecting State Highway 1 (the main road link in the South Island of New Zealand) and the South Island main trunk railway extended from Ward in Marlborough all the way to the south of Oaro in North Canterbury. The majority of landslides occurred in two geological and geotechnically distinct materials reflective of the dominant rock types in the affected area. In the Neogene sedimentary rocks (sandstones, limestones and siltstones) of the Hurunui District, North Canterbury and around Cape Campbell in Marlborough, first-time and reactivated rock-slides and rock-block slides were the dominant landslide type. These rocks also tend to have rock material strength values in the range of 5-20 MPa. In the Torlesse ‘basement’ rocks (greywacke sandstones and argillite) ofmore »the Kaikōura Ranges, first-time rock and debris avalanches were the dominant landslide type. These rocks tend to have material strength values in the range of 20-50 MPa. A feature of this earthquake is the large number (more than 200) of valley blocking landslides it generated. This was partly due to the steep and confined slopes in the area and the widely distributed strong ground shaking. The largest landslide dam has an approximate volume of 12(±2) M m3 and the debris from this travelled about 2.7 km2 downslope where it formed a dam blocking the Hapuku River. The long-term stability of cracked slopes and landslide dams from future strong earthquakes and large rainstorms are an ongoing concern to central and local government agencies responsible for rebuilding homes and infrastructure. A particular concern is the potential for debris floods to affect downstream assets and infrastructure should some of the landslide dams breach catastrophically. At least twenty-one faults ruptured to the ground surface or sea floor, with these surface ruptures extending from the Emu Plain in North Canterbury to offshore of Cape Campbell in Marlborough. The mapped landslide distribution reflects the complexity of the earthquake rupture. Landslides are distributed across a broad area of intense ground shaking reflective of the elongate area affected by fault rupture, and are not clustered around the earthquake epicentre. The largest landslides triggered by the earthquake are located either on or adjacent to faults that ruptured to the ground surface. Surface faults may provide a plane of weakness or hydrological discontinuity and adversely oriented surface faults may be indicative of the location of future large landslides. Their location appears to have a strong structural geological control. Initial results from our landslide investigations suggest predictive models relying only on ground-shaking estimates underestimate the number and size of the largest landslides that occurred.« less
  3. In the mid-ninth century, an earthquake triggered a landslide that blocked the narrow gorge of the Jhelum River where it exits the Kashmir Valley. The landslide impounded a lake that extended ≈100 km along the floor of the valley, implying an impounded volume of ≤21 km 3 , flooding the capital, Srinagar, and much agricultural land. An engineered breach of the landslide was contrived by a Medieval engineer resulting in the catastrophic release of flood waters. Using reasonable assumptions we calculate the probable minimum drainage time of this Medieval flood (<4 days) and maximum downstream surge velocities (≈12 m/s). These would have been sufficient to transport boulders in the bed of the Jhelum with dimensions of ≈6 m, consistent with those currently present in some reaches of the river. Given the morphology of the Jhelum gorge we consider that landslide outburst floods may have been common in Kashmir’s history. Ancient shorelines indicate that paleo-lake volumes in the Kashmir Valley may have exceeded 400 km 3 which, were they released in catastrophic floods, would have been associated with potential downstream outburst velocities >32 m/s, able to transport boulders with dimensions ≈40 m, far in excess of any found in the course of the Jhelum or in the Punjab plains.more »Their absence suggests that Kashmir’s ancient lakes were not lowered by outburst mechanisms much exceeding those associated with Suyya’s flood. Present-day floods have been many tens of meters shallower than those impounded by landslides in the Jhelum in the past several thousands of years. A challenge for future study will be to date Kashmir’s ancient shorelines to learn how often landslides and major impoundment events may have occurred in the valley.« less
  4. Abstract. River deltas are sites of sediment accumulation along thecoastline that form critical biological habitats, host megacities, andcontain significant quantities of hydrocarbons. Despite their importance, wedo not know which factors most significantly promote sediment accumulationand dominate delta formation. To investigate this issue, we present a globaldataset of 5399 coastal rivers and data on eight environmental variables.Of these rivers, 40 % (n=2174) have geomorphic deltas defined eitherby a protrusion from the regional shoreline, a distributary channel network,or both. Globally, coastlines average one delta forevery ∼300 km of shoreline, but there are hotspots of delta formation, for examplein Southeast Asia where there is one delta per 100 km of shoreline. Ouranalysis shows that the likelihood of a river to form a delta increases withincreasing water discharge, sediment discharge, and drainage basin area. Onthe other hand, delta likelihood decreases with increasing wave height andtidal range. Delta likelihood has a non-monotonic relationship withreceiving-basin slope: it decreases with steeper slopes, but for slopes >0.006 delta likelihood increases. This reflects differentcontrols on delta formation on active versus passive margins. Sedimentconcentration and recent sea level change do not affect delta likelihood. Alogistic regression shows that water discharge, sediment discharge, waveheight, and tidal range are most important for delta formation. The logisticregressionmore »correctly predicts delta formation 74 % of the time. Our globalanalysis illustrates that delta formation and morphology represent a balancebetween constructive and destructive forces, and this framework may helppredict tipping points at which deltas rapidly shift morphologies.« less
  5. Abstract. Flood-protection levees have been built along rivers and coastlines globally. Current datasets, however, are generally confined to territorial boundaries (national datasets) and are not always easily accessible, posing limitations for hydrologic models and assessments of flood hazard. Here, we bridge this knowledge gap by collecting and standardizing global flood-protection levee data for river deltas into the open-source global river delta levee data environment, openDELvE. In openDELvE, we aggregate levee data from national databases, reports, maps, and satellite imagery. The database identifies the river delta land areas that the levees have been designed to protect. Where data are available, we record the extent and design specifications of the levees themselves (e.g., levee height, crest width, construction material) in a harmonized format. The 1657 polygons of openDELvE contain 19 248 km of levees and 44 733.505 km2 of leveed area. For the 153 deltas included in openDELvE, 17 % of the land area is confined by flood-protection levees. Around 26 % of delta population lives within the 17 % of delta area that is protected, making leveed areas densely populated. openDELvE data can help improve flood exposure assessments, many of which currently do not account for flood-protection levees. We find that current flood hazard assessments that do not includemore »levees may exaggerate the delta flood exposure by 33 % on average, but up to 100 % for some deltas. The openDELvE is made public on an interactive platform (, 1 October 2022), which includes a community-driven revision tool to encourage inclusion of new levee data and continuous improvement and refinement of open-source levee data.« less