skip to main content


Title: Mycobiont contribution to tundra plant acquisition of permafrost‐derived nitrogen
Summary

As Arctic soils warm, thawed permafrost releases nitrogen (N) that could stimulate plant productivity and thus offset soil carbon losses from tundra ecosystems. Although mycorrhizal fungi could facilitate plant access to permafrost‐derived N, their exploration capacity beyond host plant root systems into deep, cold active layer soils adjacent to the permafrost table is unknown.

We characterized root‐associated fungi (RAF) that colonized ericoid (ERM) and ectomycorrhizal (ECM) shrub roots and occurred below the maximum rooting depth in permafrost thaw‐front soil in tussock and shrub tundra communities. We explored the relationships between root and thaw front fungal composition and plant uptake of a15N tracer applied at the permafrost boundary.

We show that ERM and ECM shrubs associate with RAF at the thaw front providing evidence for potential mycelial connectivity between roots and the permafrost boundary. Among shrubs and tundra communities, RAF connectivity to the thaw boundary was ubiquitous. The occurrence of particular RAF in both roots and thaw front soil was positively correlated with15N recovered in shrub biomass

Taxon‐specific RAF associations could be a mechanism for the vertical redistribution of deep, permafrost‐derived nutrients, which may alleviate N limitation and stimulate productivity in warming tundra.

 
more » « less
Award ID(s):
1636476
NSF-PAR ID:
10455614
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
226
Issue:
1
ISSN:
0028-646X
Page Range / eLocation ID:
p. 126-141
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. - Root-associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain. - We investigated the relationships between RAF, species-specific root traits, and uptake of N from the permafrost boundary by tundra plants experimentally warmed for nearly three decades at Toolik Lake, Alaska. - Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte, ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs. Overall, a greater proportion of variation in permafrost N uptake was related to root traits than RAF. - Our findings suggest that warming Arctic ecosystems will result in interactions between roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate system through mechanisms of carbon and N cycling. 
    more » « less
  2. Abstract

    Greater tree density and forest productivity at the tundra–taiga ecotone (TTE) are expected with climate warming, with potential feedbacks to the climate system. Yet, competition for nitrogen (N) may impact TTE dynamics. Greater tree density will likely increase N demand, while reducing N supply through soil shading and slower decomposition rates. We explored whether characteristics of roots and root‐associated fungi important to N acquisition responded to changes in density at the TTE and were related to above‐ground stand productivity and N cycling.

    We measured rooting depth, uptake of N forms among soil layers and ectomycorrhizal (EcM) colonization and composition along a natural tree density gradient of monodominant larchLarix cajanderiin northeastern Siberia. We tested relationships between larch root and fungal characteristics, above‐ground productivity and stand‐level N cycling parameters.

    Overall, there was preferential uptake of ammonium compared to glycine or nitrate. Nitrogen uptake was greatest in shallow soils of the organic horizon and related to root chemistry, root‐associated fungi and above‐ground N cycling parameters, but the direction of these relationships depended on N form. Uptake of different N forms, rooting depth and EcM colonization and composition were not related to tree density, but fungal composition was correlated with root N chemistry and above‐ground N cycling parameters. In addition to EcM, the abundance of dark septate endophytes and other ascomycetous taxa was positively related to N uptake and above‐ground N cycling parameters.

    Synthesis. There was little impact of tree density on root and fungal parameters related to N acquisition suggesting intraspecific larch competition for N was not amplified with increased density. There was, however, a strong impact of root‐associated fungi on N uptake and stand N dynamics regardless of tree density. Together, this suggests an important role of root‐associated fungi on broadscale patterns of N cycling in TTE larch forests independent of changes in tree density expected with climate warming.

     
    more » « less
  3. Abstract

    Plant–fungal associations strongly influence forest carbon and nitrogen cycling. The prevailing framework for understanding these relationships is through the relative abundance of arbuscular (AM) versus ectomycorrhizal (EcM) trees. Ericoid mycorrhizal (ErM) shrubs are also common in forests and interactions between co‐occurring ErM shrubs and AM and EcM trees could shift soil biogeochemical responses. Here we test hypotheses that the effects of ErM shrubs on soil carbon and nitrogen either extend or are redundant with those of EcM trees.

    Using regional vegetation inventory data (>3,500 plot observations) we evaluated the frequency, richness and relative abundance of ErM plants in temperate forests in the eastern United States and examined their relationship with EcM plant cover. We then used surface soil (7 cm) data from 414 plots within a single forest to analyse relationships between ErM plant cover, relative EcM tree basal area and soil carbon and nitrogen concentrations while accounting for other biogeochemical controls, such as soil moisture.

    At both scales, we found a positive relationship between ErM and EcM plants, and the majority of ErM plants were in the shrub layer. Within the forest site, ErM plants strongly modulated tree mycorrhizal dominance effects. We found negative relationships between EcM relative basal area and soil carbon and nitrogen concentrations, but these relationships were weak to negligible in the absence of ErM plants. Both EcM relative basal area and ErM plant cover were positively associated with the soil carbon‐to‐nitrogen ratio. However, this relationship was driven by relatively lower nitrogen for EcM trees and higher carbon for ErM plants. As such, the functional effects of ErM plants on soil biogeochemistry neither extended nor were redundant with those of EcM trees.

    Synthesis. We found that ErM shrubs strongly influenced the relationship between tree mycorrhizal associations and soil biogeochemistry, and the effects of ErM shrubs and EcM trees on carbon and nitrogen were functionally distinct. Our findings suggest that ErM shrubs could confound interpretation of AM versus EcM tree effects in ecosystems where they co‐occur but also bolster growing calls to consider mycorrhizal functional types as variables that strongly influence forest biogeochemistry.

     
    more » « less
  4. null (Ed.)
    Deciduous shrubs are expanding across the graminoid-dominated nutrient-poor arctic tundra. Absorptive root traits of shrubs are key determinants of nutrient acquisition strategy from tundra soils, but the variations of shrub root traits within and among common shrub genera across the arctic climatic gradient are not well resolved. Consequently, the impacts of arctic shrub expansion on belowground nutrient cycling remain largely unclear. Here, we collected roots from 170 plots of three commonly distributed shrub genera ( Alnus , Betula , and Salix ) and a widespread sedge ( Eriophorum vaginatum ) along a climatic gradient in northern Alaska. Absorptive root traits that are relevant to the strategy of plant nutrient acquisition were determined. The influence of aboveground dominant vegetation cover on the standing root biomass, root productivity, vertical rooting profile, as well as the soil nitrogen (N) pool in the active soil layer was examined. We found consistent root trait variation among arctic plant genera along the sampling transect. Alnus and Betula had relatively thicker and less branched, but more frequently ectomycorrhizal colonized absorptive roots than Salix , suggesting complementarity between root efficiency and ectomycorrhizal dependence among the co-existing shrubs. Shrub-dominated plots tended to have more productive absorptive roots than sedge-dominated plots. At the northern sites, deep absorptive roots (>20 cm depth) were more frequent in birch-dominated plots. We also found shrub roots extensively proliferated into the adjacent sedge-dominated plots. The soil N pool in the active layer generally decreased from south to north but did not vary among plots dominated by different shrub or sedge genera. Our results reveal diverse nutrient acquisition strategies and belowground impacts among different arctic shrubs, suggesting that further identifying the specific shrub genera in the tundra landscape will ultimately provide better predictions of belowground dynamics across the changing arctic. 
    more » « less
  5. Abstract

    Differences in vertical root distributions are often assumed to create resource uptake trade‐offs that determine plant growth and coexistence. Yet, most plant roots are in shallow soils, and data linking root distributions with resource uptake and plant abundances remain elusive.

    Here we used a tracer experiment to describe the vertical distribution of absorptive roots of dominant species in a shrub–steppe ecosystem. To describe how these different rooting distributions affected water uptake in wet and dry soils across a growing season, we used a soil water movement model. Root traits were then correlated with plant landscape abundances.

    Deeper root distributions extracted more soil water, had larger unique hydrological niches and were more abundant on the landscape. Though most (>50%) root biomass and tracer uptake occurred in shallow soils (0–32 cm), the depth of 50% of tracer uptake varied from 11 to 32 cm across species and species with deeper rooting distributions were more abundant on the landscape (R2 = .95). The water flow model revealed that deeper rooting distributions should extract more soil water (i.e. a range of 60–113 mm of soil water) because shallow roots were often in dry soils. These potential water uptake values were tightly correlated with species’ abundances on the landscape (R2 = .90). Finally, each species’ rooting distribution demonstrated a depth and time at which it could extract more soil water than any other rooting distribution, and the size of these unique hydrological niches indices was also well correlated with species’ abundances (R2 = .89).

    Synthesis. Our results demonstrate not only a correlation between root distributions and species abundance, but also the mechanism through which differences in rooting distributions can determine resource uptake and niche partitioning, even when most roots are found in shallow soils.

     
    more » « less