skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Image Processing in Python with Montage
The Montage image mosaic engine has found wide applicability in astronomy research, integration into processing environments, and is an examplar application for the development of advanced cyber-infrastructure. It is written in C to provide performance and portability. Linking C/C++ libraries to the Python kernel at run time as binary extensions allows them to run under Python at compiled speeds and enables users to take advantage of all the functionality in Python. We have built Python binary extensions of the 59 ANSI-C modules that make up version 5 of the Montage toolkit. This has involved a turning the code into a C library, with driver code fully separated to reproduce the calling sequence of the command-line tools; and then adding Python and C linkage code with the Cython library, which acts as a bridge between general C libraries and the Python interface. We will demonstrate how to use these Python binary extensions to perform image processing, including reprojecting and resampling images, rectifying background emission to a common level, creation of image mosaics that preserve the calibration and astrometric fidelity of the input images, creating visualizations with an adaptive stretch algorithm, processing HEALPix images, and analyzing and managing image metadata.  more » « less
Award ID(s):
1835379
PAR ID:
10133996
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Astronomical Data Analysis Software and Systems XXVIII. ASP Conference Series, Vol. 523,.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes how we have sustained the Montage image mosaic engine (http://montage.ipac.caltech.edu) first released in 2002, to support the ever-growing scale and complexity of modern data sets. The key to its longevity has been its design as a toolkit written in ANSI-C, with each tool performing one distinct task, for easy integration into scripts, pipelines and workflows. The same code base now supports Windows, JavaScript and Python by taking advantage of recent advances in compilers. The design has led to applicability of Montage far beyond what was anticipated when Montage was first built, such as supporting observation planning for the JWST. Moreover, Montage is highly scalable and is in wide use within the IT community to develop advanced, fault-tolerant cyber-infrastructure, such as job schedulers for grids, workflow orchestration, and restructuring techniques for processing complex workflows and pipelines. 
    more » « less
  2. Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)
    Boost.Histogram, a header-only C++14 library that provides multidimensional histograms and profiles, became available in Boost 1.70. It is extensible, fast, and uses modern C++ features. Using template metaprogramming, the most efficient code path for any given configuration is automatically selected. The library includes key features designed for the particle physics community, such as optional under- and overflow bins, weighted increments, reductions, growing axes, thread-safe filling, and memory-efficient counters with high-dynamic range. Python bindings for Boost.Histogram are being developed in the Scikit-HEP project to provide a fast, easy-to-install package as a backend for other Python libraries and for advanced users to manipulate histograms. Versatile and efficient histogram filling, effective manipulation, multithreading support, and other features make this a powerful tool. This library has also driven package distribution efforts in Scikit-HEP, allowing binary packages hosted on PyPI to be available for a very wide variety of platforms. Two other libraries fill out the remainder of the Scikit-HEP Python histogramming effort. Aghast is a library designed to provide conversions between different forms of histograms, enabling interaction between histogram libraries, often without an extra copy in memory. This enables a user to make a histogram in one library and then save it in another form, such as saving a Boost.Histogram in ROOT. And Hist is a library providing friendly, analyst-targeted syntax and shortcuts for quick manipulations and fast plotting using these two libraries. 
    more » « less
  3. We describe a case study to use the Montage image mosaic engine to create maps of the ALLWISE image data set in the Hierarchical Progressive Survey (HiPS) sky-tesselation scheme. Our approach demonstrates that Montage reveals the science content of infrared images in greater detail than has hitherto been possible in HiPS maps. The approach exploits two unique (to our knowledge) characteristics of the Montage image mosaic engine: background modeling to rectify the time variable image backgrounds to common levels; and an adaptive image stretch to present images for visualization. The creation of the maps is supported by the development of four new tools that when fully tested will become part of the Montage distribution. The compute intensive part of the processing lies in the reprojection of the images, and we show how we optimized the processing for efficient creation of mosaics that are used in turn to create maps in the HiPS tiling scheme. We plan to apply our methodology to infrared image data sets such a those delivered by Spitzer, 2MASS, IRAS and Planck. 
    more » « less
  4. Abstract Analysis on HEP data is an iterative process in which the results of one step often inform the next. In an exploratory analysis, it is common to perform one computation on a collection of events, then view the results (often with histograms) to decide what to try next. Awkward Array is a Scikit-HEP Python package that enables data analysis with array-at-a-time operations to implement cuts as slices, combinatorics as composable functions, etc. However, most C++ HEP libraries, such as FastJet, have an imperative, one-particle-at-a-time interface, which would be inefficient in Python and goes against the grain of the array-at-a-time logic of scientific Python. Therefore, we developed fastjet, a pip-installable Python package that provides FastJet C++ binaries, the classic (particle-at-a-time) Python interface, and the new array-oriented interface for use with Awkward Array. The new interface streamlines interoperability with scientific Python software beyond HEP, such as machine learning. In one case, adopting this library along with other array-oriented tools accelerated HEP analysis code by a factor of 20. It was designed to be easily integrated with libraries in the Scikit-HEP ecosystem, including Uproot (file I/O), hist (histogramming), Vector (Lorentz vectors), and Coffea (high-level glue). We discuss the design of the fastjet Python library, integrating the classic interface with the array oriented interface and with the Vector library for Lorentz vector operations. The new interface was developed as open source. 
    more » « less
  5. Despite advancements in the areas of parallel and distributed computing, the complexity of programming on High Performance Computing (HPC) resources has deterred many domain experts, especially in the areas of machine learning and artificial intelligence (AI), from utilizing performance benefits of such systems. Researchers and scientists favor high-productivity languages to avoid the inconvenience of programming in low-level languages and costs of acquiring the necessary skills required for programming at this level. In recent years, Python, with the support of linear algebra libraries like NumPy, has gained popularity despite facing limitations which prevent this code from distributed runs. Here we present a solution which maintains both high level programming abstractions as well as parallel and distributed efficiency. Phylanx, is an asynchronous array processing toolkit which transforms Python and NumPy operations into code which can be executed in parallel on HPC resources by mapping Python and NumPy functions and variables into a dependency tree executed by HPX, a general purpose, parallel, task-based runtime system written in C++. Phylanx additionally provides introspection and visualization capabilities for debugging and performance analysis. We have tested the foundations of our approach by comparing our implementation of widely used machine learning algorithms to accepted NumPy standards. 
    more » « less