Abstract High fidelity near-wall velocity measurements in wall bounded fluid flows continue to pose a challenge and the resulting limitations on available experimental data cloud our understanding of the near-wall velocity behavior in turbulent boundary layers. One of the challenges is the spatial averaging and limited spatial resolution inherent to cross-correlation-based particle image velocimetry (PIV) methods. To circumvent this difficulty, we implement an explicit no-slip boundary condition in a wavelet-based optical flow velocimetry (wOFV) method. It is found that the no-slip boundary condition on the velocity field can be implemented in wOFV by transforming the constraint to the wavelet domain through a series of algebraic linear transformations, which are formulated in terms of the known wavelet filter matrices, and then satisfying the resulting constraint on the wavelet coefficients using constrained optimization for the optical flow functional minimization. The developed method is then used to study the classical problem of a turbulent channel flow using synthetic data from a direct numerical simulation (DNS) and experimental particle image data from a zero pressure gradient, high Reynolds number turbulent boundary layer. The results obtained by successfully implementing the no-slip boundary condition are compared to velocity measurements from wOFV without the no-slip condition and to a commercial PIV code, using the velocity from the DNS as ground truth. It is found that wOFV with the no-slip condition successfully resolves the near-wall profile with enhanced accuracy compared to the other velocimetry methods, as well as other derived quantities such as wall shear and turbulent intensity, without sacrificing accuracy away from the wall, leading to state of the art measurements in the region of the turbulent boundary layer when applied to experimental particle images.
more »
« less
Regularized tomographic PIV for incompressible flows based on conservation of mass
Three-dimensional and three-component (3D3C) velocity measurements have long been desired to resolve the 3D spatial structures of turbulent flows. Recent advancements have demonstrated tomographic particle image velocimetry (tomo-PIV) as a powerful technique to enable such measurements. The existing tomo-PIV technique obtains 3D3C velocity field by cross-correlating two frames of 3D tomographic reconstructions of the seeding particles. A most important issue in 3D3C velocity measurement involves uncertainty, as the derivatives of the measurements are usually of ultimate interest and uncertainties are amplified when calculating derivatives. To reduce the uncertainties of 3D3C velocity measurements, this work developed a regularized tomo-PIV method. The new method was demonstrated to enhance accuracy significantly by incorporating the conservation of mass into the tomo-PIV process. The new method was demonstrated and validated both experimentally and numerically. The results illustrated that the new method was able to enhance the accuracy of 3D3C velocity measurements by 40%–50% in terms of velocity magnitude and by 0.6°–1.1° in terms of velocity orientation, compared to the existing tomo-PIV technique. These improvements brought about by the new method are expected to expand the application of tomo-PIV techniques when accuracy and quantitative 3D flow properties are required.
more »
« less
- Award ID(s):
- 1839603
- PAR ID:
- 10134345
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 59
- Issue:
- 6
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. 1667
- Size(s):
- Article No. 1667
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vortical impulse theory is used to investigate the relationship between turbine thrust and the near-wake velocity and vorticity fields. Three different hypotheses regarding the near-wake structure allow the derivation of novel expressions for the thrust on a steadily rotating wind turbine, and these are tested using stereoscopic particle-image velocimetry (PIV) data acquired just behind a rotor in a water channel. When one assumes that vortex lines and streamlines are aligned in a rotor-fixed frame of reference, one obtains a PIV-based thrust estimate that fails even to capture the trend of the directly measured thrust, and this failure is attributed to an implicit assumption that most of the generated thrust does useful work. When one neglects the axial gradients of radial velocity, the PIV-based thrust estimate captures the measured thrust trend, but underpredicts its magnitude by approximately $$33\,\%$$ . The third and most promising physical proposition treats the trailing vortices as purely ‘rolling’ structures that exhibit zero-strain rate in their cores, with the corresponding thrust estimates in close agreement with direct thrust measurements. This best-performing expression appears as a correction to the classical thrust expression from momentum theory, possessing additional squared-velocity terms that can account for the high-thrust regime of turbine operation that is typically addressed empirically.more » « less
-
Abstract The influence of several potential error sources and non-ideal experimental effects on the accuracy of a wavelet-based optical flow velocimetry (wOFV) method when applied to tracer particle images is evaluated using data from a series of synthetic flows. Out-of-plane particle displacements, severe image noise, laser sheet thickness reduction, and image intensity non-uniformity are shown to decrease the accuracy of wOFV in a similar manner to correlation-based particle image velocimetry (PIV). For the error sources tested, wOFV displays a similar or slightly increased sensitivity compared to PIV, but the wOFV results are still more accurate than PIV when the magnitude of the non-ideal effects remain within expected experimental bounds. For the majority of test cases, the results are significantly improved by using image pre-processing filters and the magnitude of improvement is consistent between wOFV and PIV. Flow divergence does not appear to have an appreciable effect on the accuracy of wOFV velocity estimation, even though the underlying fluid transport equation on which wOFV is based implicitly assumes that the motion is divergence-free. This is a significant finding for the broader applicability of planar velocimetry measurements using wOFV. Finally, it is noted that the accuracy of wOFV is not reduced notably in regions of the image between tracer particles, as long as the overall seeding density is not too sparse i.e. below 0.02 particles per pixel. This explicitly demonstrates that wOFV (when applied to particle images) yields an accurate whole field measurement, and not only at or adjacent to the discrete particle locations.more » « less
-
Abstract The velocity map imaging (VMI) technique was first introduced by Eppink and Parker in 1997, as an improvement to the original ion imaging method by Houston and Chandler in 1987. The method has gained huge popularity over the past two decades and has become a standard tool for measuring high-resolution translational energy and angular distributions of ions and electrons. VMI has evolved gradually from 2D momentum measurements to 3D measurements with various implementations and configurations. The most recent advancement has brought unprecedented 3D performance to the technique in terms of resolutions (both spatial and temporal), multi-hit capability as well as acquisition speed while maintaining many attractive attributes afforded by conventional VMI such as being simple, cost-effective, visually appealing and versatile. In this tutorial we will discuss many technical aspects of the recent advancement and its application in probing correlated chemical dynamics.more » « less
-
Abstract Controlling nanoscale tip‐induced material removal is crucial for achieving atomic‐level precision in tomographic sensing with atomic force microscopy (AFM). While advances have enabled volumetric probing of conductive features with nanometer accuracy in solid‐state devices, materials, and photovoltaics, limitations in spatial resolution and volumetric sensitivity persist. This work identifies and addresses in‐plane and vertical tip‐sample junction leakage as sources of parasitic contrast in tomographic AFM, hindering real‐space 3D reconstructions. Novel strategies are proposed to overcome these limitations. First, the contrast mechanisms analyzing nanosized conductive features are explored when confining current collection purely to in‐plane transport, thus allowing reconstruction with a reduction in the overestimation of the lateral dimensions. Furthermore, an adaptive tip‐sample biasing scheme is demonstrated for the mitigation of a class of artefacts induced by the high electric field inside the thin oxide when volumetrically reduced. This significantly enhances vertical sensitivity by approaching the intrinsic limits set by quantum tunneling processes, allowing detailed depth analysis in thin dielectrics. The effectiveness of these methods is showcased in tomographic reconstructions of conductive filaments in valence change memory, highlighting the potential for application in nanoelectronics devices and bulk materials and unlocking new limits for tomographic AFM.more » « less
An official website of the United States government
