This study outlines a probabilistic cyclic shear strain-based procedure for the determination of the minimum shear strain, γcl, required to initiate liquefaction in gravelly soils. The proposed formulation accounts for the influence of void ratio through the shear wave velocity and the grain size distribution through the coefficient of uniformity, Cu. Separate equations for γcl are derived considering four cyclic resistance models that rely on shear wave velocity as a measure of probabilistic liquefaction resistance. Similarities and differences in the resulting γcl for each of these models are identified. The accuracy and uncertainty of cyclic strain-based models in predicting liquefaction in gravelly soils are demonstrated using existing liquefaction case histories where grain size distributions are available. The excess pore pressure response of gravelly soils subjected to earthquake ground motions is evaluated using a subset of the available liquefaction case histories and the cyclic shear strain and energy-based frameworks and is compared to laboratory test specimens. Although the trends in excess pore pressure generation from critical layers in the case histories are comparable to laboratory-based responses, a greater rate of excess pore pressure generation is calculated for the field cases. The models presented in this study can help identify sites that have a high potential for ground failure when used together with other established models.
more »
« less
Assessment of an Alternative Implementation of the Dobry et al. Cyclic Strain Procedure for Evaluating Liquefaction Triggering
Despite its fundamental basis and many positive attributes, the cyclic strain approach has not been embraced by practice for evaluating liquefaction triggering. One reason for this may be the need to perform cyclic laboratory tests to develop a relationship among excess pore water pressure, cyclic strain amplitude, and number of applied strain cycles. Herein an alternative implementation of the strain-based procedure is proposed that circumvents this requirement. To assess the efficacy of this alternative implementation, Standard Penetration Test field liquefaction case histories are evaluated. The results are compared with both field observations and with predictions from a stress-based procedure. It was found that the strain-based approach yields overly conservative predictions. Also, a potentially fatal limitation of the strain-based procedure is that it ignores the decrease in soil stiffness due to excess pore pressure when representing the earthquake loading in terms of shear strain amplitude and number of equivalent cycles.
more »
« less
- PAR ID:
- 10134688
- Date Published:
- Journal Name:
- Proc. 7th International Conference on Earthquake Geotechnical Engineering (7ICEGE)
- Page Range / eLocation ID:
- 2714-2722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents numerical liquefaction simulations of a hypothetical sand in cyclic direct simple shear tests for four different constitutive models. The four models are PM4Sand in FLAC, UBCSand in FLAC, Pressure Dependent Multi Yield 02 (PDMY02) in OpenSees, and the Manzari-Dafalias04 model in OpenSees. Parameters published by others for various sands were used for this work to avoid possible introduction of our bias into the calibration process. The material properties were determined by others for different uniformly graded sands, all with a relative density of approximately 50%. The simulations do not pertain to one sand or one set of laboratory data, so therefore, there is no right or wrong answer. Instead, the goal of this paper is compare a consistent set of results that show the implementations of each model behave as expected, and to illustrate basic differences in behavior of the different models. Cyclic strength curves (cyclic stress as a function of number of cycles) illustrate the behavior of the models over a range of cyclic stresses. Each model displays pore pressure build up, softening, and cyclic contraction-dilation cycles associated with cyclic mobility. Two of the models soften to a point, but then stabilize in a repeated hysteresis loop with no additional growth in the cyclic strain amplitude after some number of cycles.more » « less
-
Investigating the role of sand and fines content and in situ drainage conditions in governing the hydraulic conductivity of gravelly deposits is highly important to characterize the liquefaction potential of gravelly soil. In this study, a variation of hydraulic conductivity with sand content has been empirically obtained based on the existing gravel liquefaction case histories. It is found that the hydraulic conductivity of a soil matrix with more than 20%–30% sand content by mass is low enough to cause liquefaction without any impervious confining layer. In addition, a numerical study has been performed using the commercial software FEQDrain to study pore pressure generation in gravelly soil at various relative densities and hydraulic conductivities with and without an impermeable cap layer when subjected to various earthquake loadings. For both unconfined and confined condition, excess pore pressure ratios consistently increase with a decrease in hydraulic conductivity ( k) and relative density ( Dr). The excess pore pressure ratio is correlated with hydraulic conductivity, soil compressibility, and cyclic stress ratio (CSR). For the confined condition, pore pressure in the gravel layer is primarily governed by the overlying cap layer and even a sandy cap layer instead of a highly impervious clay layer can cause liquefaction.more » « less
-
Wang, L.; Zhang, J.-M.; Wang, R. (Ed.)Observations of the dynamic loading and liquefaction response of a deep medium dense sand deposit to controlled blasting have allowed quantification of its large-volume dynamic behavior from the linear-elastic to nonlinear-inelastic regimes under in-situ conditions unaffected by the influence of sample disturbance or imposed laboratory boundary conditions. The dynamic response of the sand was shown to be governed by the S-waves resulting from blast-induced ground motions, the frequencies of which lie within the range of earthquake ground motions. The experimentally derived dataset allowed ready interpretation of the in-situ γ-ue responses under the cyclic strain approach. However, practitioners have more commonly interpreted cyclic behavior using the cyclic stress-based approach; thus this paper also presents the methodology implemented to interpret the equivalent number of stress cycles, Neq, and deduce the cyclic stress ratios, CSRs, generated during blast-induced shearing to provide a comprehensive comparison of the cyclic resistance of the in-situ and constant-volume, stress- and strain-controlled cyclic direct simple shear (DSS) behavior of reconstituted sand specimens consolidated to the in-situ vertical effective stress, relative density, and Vs. The multi-directional cyclic resistance of the in-situ deposit was observed to be larger than that derived from the results of the cyclic strain and stress interpretations of the uniaxial DSS test data, indicating the substantial contributions of natural soil fabric and partial drainage to liquefaction resistance during shaking. The cyclic resistance ratios, CRRs, computed using case history-based liquefaction triggering procedures based on the SPT, CPT, and Vs are compared to that determined from in-situ CRR-Neq relationships considering justified, assumed slopes of the CRR-N curve, indicating variable degrees of accuracy relative to the in-situ CRR, all of which were smaller than that associated with the in-situ cyclic resistance.more » « less
-
This paper presents the results from a study of the role of soil fabric on the cyclic response of silty soil samples retrieved from two different sites from a series of sites investigated as a part of a larger study: one along the Willamette River (Site B) and one along the Columbia River (Site D). The soils investigated in this study were retrieved from Site B and exhibited an average 𝑃𝐼=13, and from Site D which were characterized with an average 𝑃𝐼=28. The cyclic response of the soils was evaluated by performing several constant-volume, stress-controlled, cyclic direct simple shear tests (CDSS) with varying cyclic stress ratios, CSRs, on natural, intact specimens and their reconstituted counterparts. Despite the lower void ratios of the reconstituted specimens, the cyclic resistance of the intact specimens for Sites B and D at 15 loading cycles were 19% and 37% greater than their reconstituted counterparts, respectively. For the given loading conditions, the rate of excess pore pressure development, single amplitude shear strain (𝛾) accumulation, and shear stiffness degradation in reconstituted specimens were greater than the natural intact specimens, emphasizing the role of soil fabric, as confirmed by the lower shear wave velocity (𝑉𝑠) of reconstituted specimens compared to their intact counterparts.more » « less
An official website of the United States government

