skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1825189

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Evans, T Matthew; Stark, Nina; Chang, Susan (Ed.)
    A new testing system for determining soil particle size distributions (PSDs) is under development. It augments existing systems generically called “SedImaging” by the addition of a water pressure transducer near the bottom of a soil sedimentation column. The original SedImaging test provides image-based PSDs for sands, while the pressure transducer will extend the PSDs into the silt range. The new test system is called the “uSed” reflecting the measurement of water pressures (u) during a SedImaging test. This paper presents the uSed theoretical equations and the results of four pilot tests on sands to verify the theory. The four specimens were coarse sand, medium-sized sand, fine sand, and a gap-graded sand. The observed pressure decay curves were qualitatively as expected and the masses of solids predicted by the uSed theory agreed with the actual specimen masses to within an error of 2%. 
    more » « less
  2. Cone penetration tests (CPTs) are a commonly used in situ method to characterize soil. The recorded data are used for various applications, including earthquake-induced liquefaction evaluation. However, data recorded at a given depth in a CPT sounding are influenced by the properties of all the soil that falls within the zone of influence around the cone tip rather than only the soil at that particular depth. This causes data to be blurred or averaged in layered zones, a phenomenon referred to as multiple thin-layer effects. Multiple thin-layer effects can result in the inaccurate characterization of the thickness and stiffness of thin, interbedded layers. Correction procedures have been proposed to adjust CPT tip resistance for multiple thin-layer effects, but many procedures become less effective as layer thickness decreases. To compare or improve these procedures and to develop new ones, it is critical to have pairs of measured tip resistance ( qm) and true tip resistance ( qt) data, where qmis the tip resistance recorded by the CPT in a layered profile, and qtrepresents the tip resistance that would be measured in the profile absent of multiple thin-layer effects. Unfortunately, data sets containing qmand qtpairs are extremely rare. Accordingly, this article presents a unique database containing laboratory and numerically generated CPT data from 49 highly interlayered soil profiles. Both qmand qtare provided for each profile. An accompanying Jupyter notebook is provided to facilitate the use of the data and prepare them for future statistical learning (or other) applications to support multiple thin-layer correction procedure development. 
    more » « less
  3. The severity of surficial liquefaction manifestation was significantly over-predicted for a large subset of case histories from relatively recent earthquakes that impacted the Canterbury region of New Zealand. Such over-predicts generally occurred for profiles having predominantly high fines-content (FC), high-plasticity soil strata. Herein, the liquefaction case histories from the Canterbury earthquakes are used to investigate the performances of three different manifestation severity index (MSI) models. The prevalence of high FC, high-plasticity strata in a profile is quantified through the soil behavior type index averaged over the upper 10 m of a profile ( Ic10). It is shown that for each MSI model (1) the threshold MSI value distinguishing cases with and without manifestation increases as Ic10increases and (2) the ability of the MSI to segregate cases with and without manifestation decreases with increasing Ic10. Additionally, probabilistic models are proposed for evaluating the severity of surficial liquefaction manifestation as a function of MSI and Ic10. The approaches presented in this study allow better interpretations of predictions made by existing MSI models, although their efficacy decreases at sites with high Ic10. An improved MSI model is ultimately needed that better accounts for the effects of high-FC, high-plasticity soils more directly. 
    more » « less