The unconventional clathrates, Cs 8 Zn 18 Sb 28 and Cs 8 Cd 18 Sb 28 , were synthesized and reinvestigated. These clathrates exhibit unique and extensive superstructural ordering of the clathrate-I structure that was not initially reported. Cs 8 Cd 18 Sb 28 orders in the Ia 3̄ d space group (no. 230) with 8 times larger volume of the unit cell in which most framework atoms segregate into distinct Cd and Sb sites. The structure of Cs 8 Zn 18 Sb 28 is much more complicated, with an 18-fold increase of unit cell volume accompanied by significant reduction of symmetry down to P 2 (no. 3) monoclinic space group. This structure was revealed by a combination of synchrotron X-ray diffraction and electron microscopy techniques. A full solid solution, Cs 8 Zn 18−x Cd x Sb 28 , was also synthesized and characterized. These compounds follow Vegard's law in regard to their primitive unit cell sizes and melting points. Variable temperature in situ synchrotron powder X-ray diffraction was used to study the formation and melting of Cs 8 Zn 18 Sb 28 . Due to the heavy elements comprising clathrate framework and the complex structural ordering, the synthesized clathratesmore »
III–V Clathrate Semiconductors with Outstanding Hole Mobility: Cs 8 In 27 Sb 19 and A 8 Ga 27 Sb 19 ( A = Cs, Rb)
- Award ID(s):
- 1834750
- Publication Date:
- NSF-PAR ID:
- 10135142
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 142
- Issue:
- 4
- Page Range or eLocation-ID:
- 2031 to 2041
- ISSN:
- 0002-7863
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
-
In this paper, the photoluminescent properties of a lead-free double perovskite Cs 2 NaInCl 6 doped with Sb 3+ are explored. The host crystal structure is a cubic double perovskite with Fm 3̄ m symmetry, a = 10.53344(4) Å, and rock salt ordering of Na + and In 3+ . It is a wide bandgap compound ( E g ≈ 5.1 eV), and substitution with Sb 3+ leads to strong absorption in the UV due to localized 5s 2 → 5s 1 5p 1 transitions on Sb 3+ centers. Radiative relaxation back to the 5s 2 ground state, via a 3 P 1 → 1 S 0 transition, leads to intense blue luminescence, centered at 445 nm, with a photoluminescent quantum yield of 79%. The Stokes shift of 0.94 eV is roughly 33% smaller than it is in the related vacancy ordered double perovskite Cs 2 SnCl 6 . The reduction in Stokes shift is likely due to a change in coordination number of Sb 3+ from 6-coordinate in Cs 2 NaInCl 6 to 5-coordinate in Cs 2 SnCl 6 . In addition to the high quantum yield, Cs 2 NaInCl 6 :Sb 3+ exhibits excellent air/moisture stability and canmore »