skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1834750

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ferro‐rotational (FR) materials, renowned for their distinctive material functionalities, present challenges in the growth of homo‐FR crystals (i.e., single FR domain). This study explores a cost‐effective approach to growing homo‐FR helimagnetic RbFe(SO4)2(RFSO) crystals by lowering the crystal growth temperature below theTFRthreshold using the high‐pressure hydrothermal method. Through polarized neutron diffraction experiments, it is observed that nearly 86% of RFSO crystals consist of a homo‐FR domain. Notably, RFSO displays remarkable stability in the FR phase, with an exceptionally highTFRof ≈573 K. Furthermore, RFSO exhibits a chiral helical magnetic structure with switchable ferroelectric polarization below 4 K. Importantly, external electric fields can induce a single magnetic domain state and manipulate its magnetic chirality. The findings suggest that the search for new FR magnets with outstanding material properties should consider magnetic sulfates as promising candidates. 
    more » « less
  2. Abstract Cyclooctatetraene (COT) and COT2−dianion are well‐known as archetypical non‐aromatic and aromatic systems, respectively. However, despite a wealth of studies the effect of one electron addition to the eight‐membered ring remains equivocal. Herein, we report the first stepwise electron addition to tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT or tetraphenylene), accompanied by isolation and structural characterization of the mono‐ and doubly‐reduced anions. The X‐ray crystallographic study reveals only a small asymmetric distortion of the saddle‐shaped core upon one electron uptake. In contrast, the doubly‐reduced product exhibits a severely twisted conformation, with a new C−C bond separating the COT ring into two fused 5‐membered rings. The reversibility of the two‐fold reduction and bond rearrangement is demonstrated by NMR spectroscopy. In agreement with experimental results, computational analysis confirms that the reduction‐induced core rearrangement requires the addition of the second electron. 
    more » « less
  3. Abstract π-Conjugated macrocycles behave differently from analogous linear chains because their electronic wavefunctions resemble a quantum particle on a ring, leading to aromaticity or anti-aromaticity. [18]Annulene, (CH)18, is the archetypal non-benzenoid aromatic hydrocarbon. Molecules with circuits of 4n + 2 π electrons, such as [18]annulene (n = 4), are aromatic, with enhanced stability and diatropic ring currents (magnetic shielding inside the ring), whereas those with 4nπ electrons, such as the dianion of [18]annulene, are expected to be anti-aromatic and exhibit the opposite behaviour. Here we use1H NMR spectroscopy to re-evaluate the structure of the [18]annulene dianion. We also show that it can be reduced further to an aromatic tetraanion, which has the same shape as the dianion. The crystal structure of the tetraanion lithium salt confirms its geometry and reveals a metallocene-like sandwich, with five Li+cations intercalated between two [18]annulene tetraanions. We also report a heteroleptic sandwich, with [18]annulene and corannulene tetraanion decks. 
    more » « less
  4. Abstract One-dimensional (1D) olivine iron phosphate (FePO4) is widely proposed for electrochemical lithium (Li) extraction from dilute water sources, however, significant variations in Li selectivity were observed for particles with different physical attributes. Understanding how particle features influence Li and sodium (Na) co-intercalation is crucial for system design and enhancing Li selectivity. Here, we investigate a series of FePO4particles with various features and revealed the importance of harnessing kinetic and chemo-mechanical barrier difference between lithiation and sodiation to promote selectivity. The thermodynamic preference of FePO4provides baseline of selectivity while the particle features are critical to induce different kinetic pathways and barriers, resulting in different Li to Na selectivity from 6.2 × 102to 2.3 × 104. Importantly, we categorize the FePO4particles into two groups based on their distinctly paired phase evolutions upon lithiation and sodiation, and generate quantitative correlation maps among Li preference, morphological features, and electrochemical properties. By selecting FePO4particles with specific features, we demonstrate fast (636 mA/g) Li extraction from a high Li source (1: 100 Li to Na) with (96.6 ± 0.2)% purity, and high selectivity (2.3 × 104) from a low Li source (1: 1000 Li to Na) with (95.8 ± 0.3)% purity in a single step. 
    more » « less
  5. Abstract Several renewable energy schemes aim to use the chemical bonds in abundant molecules like water and ammonia as energy reservoirs. Because the O-H and N-H bonds are quite strong (>100 kcal/mol), it is necessary to identify substances that dramatically weaken these bonds to facilitate proton-coupled electron transfer processes required for energy conversion. Usually this is accomplished through coordination-induced bond weakening by redox-active metals. However, coordination-induced bond weakening is difficult with earth’s most abundant metal, aluminum, because of its redox inertness under mild conditions. Here, we report a system that uses aluminum with a redox non-innocent ligand to achieve significant levels of coordination-induced bond weakening of O-H and N-H bonds. The multisite proton-coupled electron transfer manifold described here points to redox non-innocent ligands as a design element to open coordination-induced bond weakening chemistry to more elements in the periodic table. 
    more » « less
  6. Abstract The design and synthesis of polyhedra using coordination‐driven self‐assembly has been an intriguing research area for synthetic chemists. Metal‐organic polyhedra are a class of intricate molecular architectures that have garnered significant attention in the literature due to their diverse structures and potential applications. Hereby, we reportCu‐MOP, a bifunctional metal‐organic cuboctahedra built using 2,6‐dimethylpyridine‐3,5‐dicarboxylic acid and copper acetate at room temperature. The presence of both Lewis basic pyridine groups and Lewis acidic copper sites imparts catalytic activity to Cu‐MOP for the tandem one‐pot deacetalization‐Knoevenagel/Henry reactions. The effect of solvent system and time duration on the yields of the reactions was studied, and the results illustrate the promising potential of these metal‐organic cuboctahedra, also known as nanoballs for applications in catalysis. 
    more » « less
  7. Abstract Two-dimensional materials have unusual properties and promise applications in nanoelectronics, spintronics, photonics, (electro)catalysis, separations, and elsewhere. Most are inorganic and their properties are difficult to tune. Here we report the preparation of Zn porphene, a member of the previously only hypothetical organic metalloporphene family. Similar to graphene, these also are fully conjugated two-dimensional polymers, but are composed of fused metalloporphyrin rings. Zn porphene is synthesized on water surface by two-dimensional oxidative polymerization of a Langmuir layer of Zn porphyrin with K2IrCl6, reminiscent of known one-dimensional polymerization of pyrroles. It is transferable to other substrates and bridges μm-sized pits. Contrary to previous theoretical predictions of metallic conductivity, it is a p-type semiconductor due to a predicted Peierls distortion of its unit cell from square to rectangular, analogous to the appearance of bond-length alternation in antiaromatic molecules. The observed reversible insertion of various metal ions, possibly carrying a fifth or sixth ligand, promises tunability and even patterning of circuits on an atomic canvas without removing any π centers from conjugation. 
    more » « less
  8. Abstract We communicate a feasibility study for high‐resolution structural characterization of biomacromolecules in aqueous solution from X‐ray scattering experiments measured over a range of scattering vectors (q) that is approximately two orders of magnitude wider than used previously for such systems. Scattering data with such an extendedq‐range enables the recovery of the underlying real‐space atomic pair distribution function, which facilitates structure determination. We demonstrate the potential of this method for biomacromolecules using several types of cyclodextrins (CD) as model systems. We successfully identified deviations of the tilting angles for the glycosidic units in CDs in aqueous solutions relative to their values in the crystalline forms of these molecules. Such level of structural detail is inaccessible from standard small angle scattering measurements. Our results call for further exploration of ultra‐wide‐angle X‐ray scattering measurements for biomacromolecules. 
    more » « less
  9. Abstract Metalation of the polynucleating ligandF,tbsLH6(1,3,5‐C6H9(NC6H3−4‐F−2‐NSiMe2tBu)3) with two equivalents of Zn(N(SiMe3)2)2affords the dinuclear product (F,tbsLH2)Zn2(1), which can be further deprotonated to yield (F,tbsL)Zn2Li2(OEt2)4(2). Transmetalation of2with NiCl2(py)2yields the heterometallic, trinuclear cluster (F,tbsL)Zn2Ni(py) (3). Reduction of3with KC8affords [KC222][(F,tbsL)Zn2Ni] (4) which features a monovalent Ni centre. Addition of 1‐adamantyl azide to4generates the bridging μ3‐nitrenoid adduct [K(THF)3][(F,tbsL)Zn2Ni(μ3‐NAd)] (5). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S=). Cyclic voltammetry of5reveals two fully reversible redox events. The dianionic nitrenoid [K2(THF)9][(F,tbsL)Zn2Ni(μ3‐NAd)] (6) was isolated and characterized while the neutral redox isomer was observed to undergo both intra‐ and intermolecular H‐atom abstraction processes. Ni K‐edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2Ni] nitrenoid complexes. However, DFT analysis suggests Ni‐borne oxidation for5. 
    more » « less
  10. Abstract Polarimetric infrared (IR) detection bolsters IR thermography by leveraging the polarization of light. Optical anisotropy, i.e., birefringence and dichroism, can be leveraged to achieve polarimetric detection. Recently, giant optical anisotropy is discovered in quasi‐1D narrow‐bandgap hexagonal perovskite sulfides, A1+xTiS3, specifically BaTiS3and Sr9/8TiS3. In these materials, the critical role of atomic‐scale structure modulations in the unconventional electrical, optical, and thermal properties raises the broader question of the nature of other materials that belong to this family. To address this issue, for the first time, high‐quality single crystals of a largely unexplored member of the A1+xTiX3(X = S, Se) family, BaTiSe3are synthesized. Single‐crystal X‐ray diffraction determined the room‐temperature structure with theP31cspace group, which is a superstructure of the earlier reportedP63/mmcstructure. The crystal structure of BaTiSe3features antiparallelc‐axis displacements similar to but of lower symmetry than BaTiS3, verified by the polarization dependent Raman spectroscopy. Fourier transform infrared (FTIR) spectroscopy is used to characterize the optical anisotropy of BaTiSe3, whose refractive index along the ordinary (E⊥c) and extraordinary (E‖c) optical axes is quantitatively determined by combining ellipsometry studies with FTIR. With a giant birefringence Δn∼ 0.9, BaTiSe3emerges as a new candidate for miniaturized birefringent optics for mid‐wave infrared to long‐wave infrared imaging. 
    more » « less