Abstract Decarbonylation along with P‐atom transfer from the phosphaethynolate anion, PCO−, to the NbIVcomplex [(PNP)NbCl2(NtBuAr)] (1) (PNP=N[2‐PiPr2‐4‐methylphenyl]2−; Ar=3,5‐Me2C6H3) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(NtBuAr)] (2). Reduction of2with CoCp*2cleaves the P−P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(NtBuAr)] (3). Theoretical studies have been used to understand both the coupling of the P‐atom and the reductive cleavage of the P−P bond. Reaction of3with a two‐electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P−P coupled ligand, namely [(PNPP)Nb=S(NtBuAr)] (4).
more »
« less
Phosphonium Boranes for the Selective Transport of Fluoride Anions across Artificial Phospholipid Membranes
Abstract With the view of developing selective transmembrane anion transporters, a series of phosphonium boranes of general formula [p‐RPh2P(C6H4)BMes2]+have been synthesized and evaluated. The results demonstrate that variation of the R group appended to the phosphorus atom informs the lipophilicity of these compounds, their Lewis acidity, as well as their transport activity. Anion transport experiments in POPC‐based large unilamellar vesicles show that these main‐group cations are highly selective for the fluoride anion, which is transported more than 20 times faster than the chloride anion. Finally, this work shows that the anion transport properties of these compounds are extremely sensitive to the steric crowding about the boron atom, pointing to the crucial involvement of the Group 13 element as the anion binding site.
more »
« less
- Award ID(s):
- 1856453
- PAR ID:
- 10135541
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 59
- Issue:
- 13
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 5298-5302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reactions of carbon with a heavy main group metal (M = Sb, Bi, or Te) in an excess of lanthanum/nickel eutectic flux lead to formation of a family of carbide compounds La3MC2with a new structure type. The monoclinic structure features C24−anions octahedrally coordinated by six La3+cations, andManions surrounded by 8 La3+cations. These compounds are not charge‐balanced and lie on the border between intermetallic carbides and mixed anion salts. Density of states calculations show a pseudogap at the Fermi level for La3BiC2, which indicates that this compound is a poor metal with optimized LaBi bonding interactions.more » « less
-
The title complex, (1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1′,O2′)triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether molecule and the two oxygen atoms of the oxalatotriphenylstannate anion. It crystallizes in the monoclinic crystal system within the space groupP21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming acis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H...O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending alonga-axis direction. The primary inter-chain interactions are van der Waals forces.more » « less
-
Abstract A novelC3symmetric 1,1’‐bi‐2‐naphthol‐based Schiff base (R,R,R)‐6has been synthesized which shows highly selective fluorescence enhancement with Zn2+among 21 metal cations examined. Its sensitivity and selectivity are found to be greater than other relatedC2(1) andC1[(R)‐9] symmetric compounds in the fluorescent recognition of Zn2+. The mechanistic study reveals that the selective fluorescence enhancement of the probe can be attributed to the formation of a unimolecular multidentate 6‐coordinated Zn2+complex.more » « less
-
The reactions of triphenylsulfonium chloride ([TPS][Cl]) with various acids in methanol yield the corresponding salts triphenylsulfonium triiodide, C18H15S+·I3−or [TPS][I3] (I), triphenylsulfonium perchlorate, C18H15S+·ClO4−or [TPS][ClO4] (II), and triphenylsulfonium hexafluorophosphate, C18H15S+·PF6−or [TPS][PF6] (III), as crystalline products. These crystals were structurally characterized by single-crystal X-ray diffraction. In all three compounds, the sulfur atom in the triphenylsulfonium cation adopts a distorted trigonal–pyramidal geometry. [TPS][I3] (I) and [TPS][PF6](III) both crystallize in the space groupP21/n, while [TPS][ClO4] (II) crystallizes inP21. The S—C bond lengths are comparable across the three salts, and the S—C—S bond angles are consistently between 102 and 106°. Hirshfeld surface analyses reveal that each structure is dominated by hydrogen-based intermolecular contacts, supplemented by anion-specific interactions such as I...H in (I), O...H in (II), and F...H in (III). These contacts organize the ions into mono-periodic ribbon- or chain-like arrangements. No significant π–π stacking is observed.more » « less
An official website of the United States government
