skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Parallel and Adaptive Partitioning for Load-balancing in Spatial Join
Due to the developments of topographic techniques, clear satellite imagery, and various means for collecting information, geospatial datasets are growing in volume, complexity, and heterogeneity. For efficient execution of spatial computations and analytics on large spatial data sets, parallel processing is required. To exploit fine-grained parallel processing in large scale compute clusters, partitioning in a load-balanced way is necessary for skewed datasets. In this work, we focus on spatial join operation where the inputs are two layers of geospatial data. Our partitioning method for spatial join uses Adaptive Partitioning (ADP) technique, which is based on Quadtree partitioning. Unlike existing partitioning techniques, ADP partitions the spatial join workload instead of partitioning the individual datasets separately to provide better load-balancing. Based on our experimental evaluation, ADP partitions spatial data in a more balanced way than Quadtree partitioning and Uniform grid partitioning. ADP uses an output-sensitive duplication avoidance technique which minimizes duplication of geometries that are not part of spatial join output. In a distributed memory environment, this technique can reduce data communication and storage requirements compared to traditional methods. To improve the performance of ADP, an MPI+Threads based parallelization is presented. With ParADP, a pair of real world datasets, one with 717 million polylines and another with 10 million polygons, is partitioned into 65,536 grid cells within 7 seconds. ParADP performs well with both good weak scaling up to 4,032 CPU cores and good strong scaling up to 4,032 CPU cores.  more » « less
Award ID(s):
1756000
PAR ID:
10135902
Author(s) / Creator(s):
;
Date Published:
Journal Name:
34th IEEE International Parallel & Distributed Processing Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial join is an important operation for combining spatial data. Parallelization is essential for improving spatial join performance. However, load imbalance due to data skew limits the scalability of parallel spatial join. There are many work sharing techniques to address this problem in a parallel environment. One of the techniques is to use data and space partitioning and then scheduling the partitions among threads/processes with the goal of minimizing workload differences across threads/processes. However, load imbalance still exists due to differences in join costs of different pairs of input geometries in the partitions. For the load imbalance problem, we have designed a work stealing spatial join system (WSSJ-DM) on a distributed memory environment. Work stealing is an approach for dynamic load balancing in which an idle processor steals computational tasks from other processors. This is the first work that uses work stealing concept (instead of work sharing) to parallelize spatial join computation on a large compute cluster. We have evaluated the scalability of the system on shared and distributed memory. Our experimental evaluation shows that work stealing is an effective strategy. We compared WSSJ-DM with work sharing implementations of spatial join on a high performance computing environment using partitioned and un-partitioned datasets. Static and dynamic load balancing approaches were used for comparison. We study the effect of memory affinity in work stealing operations involved in spatial join on a multi-core processor. WSSJ-DM performed spatial join using ST_Intersection on Lakes (8.4M polygons) and Parks (10M polygons) in 30 seconds using 35 compute nodes on a cluster (1260 CPU cores). A work sharing Master-Worker implementation took 160 seconds in contrast. 
    more » « less
  2. In recent times, geospatial datasets are growing in terms of size, complexity and heterogeneity. High performance systems are needed to analyze such data to produce actionable insights in an efficient manner. For polygonal a.k.a vector datasets, operations such as I/O, data partitioning, communication, and load balancing becomes challenging in a cluster environment. In this work, we present MPI-Vector-IO, a parallel I/O library that we have designed using MPI-IO specifically for partitioning and reading irregular vector data formats such as Well Known Text. It makes MPI aware of spatial data, spatial primitives and provides support for spatial data types embedded within collective computation and communication using MPI message-passing library. These abstractions along with parallel I/O support are useful for parallel Geographic Information System (GIS) application development on HPC platforms. Performance evaluation is done on Lustre and GPFS filesystems. MPI-Vector-IO scales well with MPI processes and file size and achieves bandwidth up to 22 GB/s for common spatial data access patterns. We observed that independent file read functions performed better than collective functions in MPI-IO for contiguous access pattern on Lustre. In general, the I/O is improved by one to two orders of magnitude over real-world datasets using up to 1152 CPU cores. Spatial Join query is used as an exemplar to demonstrate an end-to-end application using MPI-Vector-IO. 
    more » « less
  3. We are in the era of Spatial Big Data. Due to the developments of topographic techniques, clear satellite imagery, and various means for collecting information, geospatial datasets are growing in volume, complexity and heterogeneity. For example, OpenStreetMap data for the whole world is about 1 TB and NASA world climate datasets are about 17 TB. Spatial data volume and variety makes spatial computations both data-intensive and compute-intensive. Due to the irregular distribution of spatial data, domain decomposition becomes challenging. In this work, we present spatial data partitioning technique that takes into account spatial join cost. In addition, we present spatial join computation using Asynchronous Dynamic Load Balancing (ADLB) library. ADLB is a software library designed to help rapidly build scalable parallel programs using MPI. We evaluated the performance of ADLB-based MPI-GIS implementation. In our existing work, spatial data movement cost from ADLB server to worker MPI processes limited the scalability of MPI-GIS. 
    more » « less
  4. Geospatial data comprise around 60% of all the publicly available data. One of the essential and most complex operations that brings together multiple geospatial datasets is the spatial join operation. Due to its complexity, there is a lot of partitioning techniques and parallel algorithms for the spatial join problem. This leads to a complex query optimization problem: which algorithm to use for a given pair of input datasets that we want to join? With the rise of machine learning, there is a promise in addressing this problem with the use of various learned models. However, one of the concerns is the lack of standard and publicly available data to train and test on, as well as the lack of accessible baseline models. This resource paper helps the research community solve this problem by providing synthetic and real datasets for spatial join, source code for constructing more datasets, and several baseline solutions that researchers can further extend and compare to. 
    more » « less
  5. null (Ed.)
    Abstract Given two datasets (or tables) A and B and a search distance $$\epsilon$$ ϵ , the distance similarity join, denoted as $$A \ltimes _\epsilon B$$ A ⋉ ϵ B , finds the pairs of points ( $$p_a$$ p a , $$p_b$$ p b ), where $$p_a \in A$$ p a ∈ A and $$p_b \in B$$ p b ∈ B , and such that the distance between $$p_a$$ p a and $$p_b$$ p b is $$\le \epsilon$$ ≤ ϵ . If $$A = B$$ A = B , then the similarity join is equivalent to a similarity self-join, denoted as $$A \bowtie _\epsilon A$$ A ⋈ ϵ A . We propose in this paper Heterogeneous Epsilon Grid Joins ( HEGJoin ), a heterogeneous CPU-GPU distance similarity join algorithm. Efficiently partitioning the work between the CPU and the GPU is a challenge. Indeed, the work partitioning strategy needs to consider the different characteristics and computational throughput of the processors (CPU and GPU), as well as the data-dependent nature of the similarity join that accounts in the overall execution time (e.g., the number of queries, their distribution, the dimensionality, etc.). In addition to HEGJoin , we design in this paper a dynamic and two static work partitioning strategies. We also propose a performance model for each static partitioning strategy to perform the distribution of the work between the processors. We evaluate the performance of all three partitioning methods by considering the execution time and the load imbalance between the CPU and GPU as performance metrics. HEGJoin achieves a speedup of up to $$5.46\times$$ 5.46 × ( $$3.97\times$$ 3.97 × ) over the GPU-only (CPU-only) algorithms on our first test platform and up to $$1.97\times$$ 1.97 × ( $$12.07\times$$ 12.07 × ) on our second test platform over the GPU-only (CPU-only) algorithms. 
    more » « less