skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single step Production of graphite from organic Samples for Radiocarbon Measurements
Abstract We present a new low-cost, high-throughput method for converting many types of organic carbon samples into graphite for radiocarbon ( 14 C) measurements by accelerator mass spectrometry (AMS). The method combines sample combustion and reduction to graphite into a single procedure. In the Single Step method, solid samples are placed directly into Pyrex containing zinc, titanium hydride and iron catalyst. The tube is evacuated, flame sealed, and placed in a muffle furnace for 7 hr. A variety of organic samples have been tested including oxalic acid, sucrose, wood, peat, collagen, humic acid, and contamination swipe samples. The method significantly reduces the time required to produce a graphite sample for 14 C measurement, with analytical precision and accuracy approaching that of traditional two-step combustion and hydrogen reduction methods. The details and applicability of the method are presented.  more » « less
Award ID(s):
1755125
PAR ID:
10136015
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Radiocarbon
Volume:
61
Issue:
6
ISSN:
0033-8222
Page Range / eLocation ID:
1843 to 1854
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Northern Arizona University, Flagstaff, Arizona, USA, recently installed a MIni CArbon DAting System (MICADAS) with a gas interface system (GIS) for determining the14C content of CO2gas released by the acid dissolution of biogenic carbonates. We compare 48 paired graphite, GIS, and direct carbonate14C determinations of individual mollusk shells and echinoid tests. GIS sample sizes ranged between 0.5 and 1.5 mg and span 0.1 to 45.1 ka BP (n = 42). A reduced major axis regression shows a strong relationship between GIS and graphite percent Modern Carbon (pMC) values (m = 1.011; 95% CI [0.997–1.023], R2= 0.999) that is superior to the relationship between the direct carbonate and graphite values (m = 0.978; 95% CI [0.959-0.999], R2= 0.997). Sixty percent of GIS pMC values are within ±0.5 pMC of their graphite counterparts, compared to 26% of direct carbonate pMC values. The precision of GIS analyses is approximately ±7014C yrs to 6.5 ka BP and decreases to approximately ±13014C yrs at 12.5 ka BP. This precision is on par with direct carbonate and is approximately five times larger than for graphite. Six Plio-Pleistocene mollusk and echinoid samples yield finite ages when analyzed as direct carbonate but yield non-finite ages when analyzed as graphite or as GIS. Our results show that GIS14C dating of biogenic carbonates is preferable to direct carbonate14C dating and is an efficient alternative to standard graphite14C dating when the precision of graphite14C dating is not required. 
    more » « less
  2. ABSTRACT Late Holocene relative sea-level reconstructions are commonly generated using proxies preserved in salt-marsh and mangrove sediment. These depositional environments provide abundant material for radiocarbon dating in the form of identifiable macrofossils (salt marshes) and bulk organic sediment (mangroves). We explore if single-step graphitization of these samples in preparation for radiocarbon dating can increase the number and temporal resolution of relative sea-level reconstructions without a corresponding increase in cost. Dating of salt-marsh macrofossils from the northeastern United States and bulk mangrove sediment from the Federated States of Micronesia indicates that single-step graphitization generates radiocarbon ages that are indistinguishable from replicates prepared using traditional graphitization, but with a modest increase in error (mean/maximum of 6.25/15 additional 14 C yr for salt-marsh macrofossils). Low 12 C currents measured on bulk mangrove sediment following single-step graphitization likely render them unreliable despite their apparent accuracy. Simulated chronologies for six salt-marsh cores indicate that having twice as many radiocarbon dates (since single-step graphitization costs ∼50% of traditional graphitization) results in narrower confidence intervals for sample age estimated by age-depth models when the additional error from the single-step method is less than ∼50 14 C yr (∼30 14 C yr if the chronology also utilizes historical age markers). Since these thresholds are greater than our empirical estimates of the additional error, we conclude that adopting single-step graphitization for radiocarbon measurements on plant macrofossils is likely to increase precision of age-depth models by more than 20/10% (without/with historical age markers). This improvement can be implemented without additional cost. 
    more » « less
  3. ABSTRACT In practice, obtaining radiocarbon ( 14 C) composition of organic matter (OM) in sediments requires first removing inorganic carbon (IC) by acid-treatment. Two common treatments are acid rinsing and fumigation. Resulting 14 C content obtained by different methods can differ, but underlying causes of these differences remain elusive. To assess the influence of different acid-treatments on 14 C content of sedimentary OM, we examine the variability in 14 C content for a range of marine and river sediments. By comparing results for unacidified and acidified sediments [HCl rinsing (Rinse HCl ) and HCl fumigation (Fume HCl )], we demonstrate that the two acid-treatments can affect 14 C content differentially. Our findings suggest that, for low-carbonate samples, Rinse HCl affects the Fm values due to loss of young labile organic carbon (OC). Fume HCl makes the Fm values for labile OC decrease, leaving the residual OC older. High-carbonate samples can lose relatively old organic components during Rinse HCl , causing the Fm values of remaining OC to increase. Fume HCl can remove thermally labile, usually young, OC and reduce the Fm values. We suggest three factors should be taken into account when using acid to remove carbonate from sediments: IC abundance, proportions of labile and refractory OC, and environmental matrix. 
    more » « less
  4. Abstract Speleothem organic matter can be a powerful tracer for past environmental conditions and karst processes. Carbon isotope measurements (δ 13 C and 14 C) in particular can provide crucial information on the provenance and age of speleothem organic matter, but are challenging due to low concentrations of organic matter in stalagmites. Here, we present a method development study on extraction and isotopic characterization of speleothem organic matter using a rapid procedure with low laboratory contamination risk. An extensive blank assessment allowed us to quantify possible sources of contamination through the entire method. Although blank contamination is consistently low (1.7 ± 0.34 – 4.3 ± 0.86 μg C for the entire procedure), incomplete sample decarbonation poses a still unresolved problem of the method, but can be detected when considering both δ 13 C and 14 C values. We test the method on five stalagmites, showing reproducible results on samples as small as 7 μg C for δ 13 C and 20 μg C for 14 C. Furthermore, we find consistently lower non-purgeable organic carbon (NPOC) 14 C values compared to the carbonate 14 C over the bomb spike interval in two stalagmites from Yok Balum Cave, Belize, suggesting overprint of a pre-aged or even fossil source of carbon on the organic fraction incorporated by these stalagmites. 
    more » « less
  5. null (Ed.)
    ABSTRACT The direct carbonate procedure for accelerator mass spectrometry radiocarbon (AMS 14 C) dating of submilligram samples of biogenic carbonate without graphitization is becoming widely used in a variety of studies. We compare the results of 153 paired direct carbonate and standard graphite 14 C determinations on single specimens of an assortment of biogenic carbonates. A reduced major axis regression shows a strong relationship between direct carbonate and graphite percent Modern Carbon (pMC) values (m = 0.996; 95% CI [0.991–1.001]). An analysis of differences and a 95% confidence interval on pMC values reveals that there is no significant difference between direct carbonate and graphite pMC values for 76% of analyzed specimens, although variation in direct carbonate pMC is underestimated. The difference between the two methods is typically within 2 pMC, with 61% of direct carbonate pMC measurements being higher than their paired graphite counterpart. Of the 36 specimens that did yield significant differences, all but three missed the 95% significance threshold by 1.2 pMC or less. These results show that direct carbonate 14 C dating of biogenic carbonates is a cost-effective and efficient complement to standard graphite 14 C dating. 
    more » « less