skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying snowfall from orographic cloud seeding
Climate change and population growth have increased demand for water in arid regions. For over half a century, cloud seeding has been evaluated as a technology to increase water supply; statistical approaches have compared seeded to nonseeded events through precipitation gauge analyses. Here, a physically based approach to quantify snowfall from cloud seeding in mountain cloud systems is presented. Areas of precipitation unambiguously attributed to cloud seeding are isolated from natural precipitation (<1 mm h−1). Spatial and temporal evolution of precipitation generated by cloud seeding is then quantified using radar observations and snow gauge measurements. This study uses the approach of combining radar technology and precipitation gauge measurements to quantify the spatial and temporal evolution of snowfall generated from glaciogenic cloud seeding of winter mountain cloud systems and its spatial and temporal evolution. The results represent a critical step toward quantifying cloud seeding impact. For the cases presented, precipitation gauges measured increases between 0.05 and 0.3 mm as precipitation generated by cloud seeding passed over the instruments. The total amount of water generated by cloud seeding ranged from 1.2 × 105m3(100 ac ft) for 20 min of cloud seeding, 2.4 × 105m3(196 ac ft) for 86 min of seeding to 3.4 x 105m3(275 ac ft) for 24 min of cloud seeding.  more » « less
Award ID(s):
1546963
PAR ID:
10136119
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
10
ISSN:
0027-8424
Page Range / eLocation ID:
p. 5190-5195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cloud seeding of wintertime orographic clouds in the western United States has been attempted to enhance snow production and snowpack. Due to the scarcity of long-term, high-resolution cloud and precipitation observations over complex terrain, few studies have explored variations in orographic snowfall amounts by comparing environmental conditions and cloud characteristics with surface snowfall distribution and quantity. This study analyzes the environmental conditions and cloud characteristics in relation to surface snowfall patterns for the 24 snowfall events observed during the 2017 Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). The investigation aims to understand: 1) What is the influence, if any, of wind, turbulence, and updraft strength on snowfall amounts, rates, and distribution? 2) What is the relationship, if any, of cloud properties and precipitation-forming effectiveness? and 3) Can cloud seeding modify controlling cloud characteristics sufficiently to increase precipitation in otherwise inefficient orographic clouds? The analysis over a 7200-km2observational domain revealed that the accumulated liquid-equivalent snowfall was <0.9 × 107m3and snowfall rates were <0.45 mm h−1for about half of the events. Low snowfall events were characterized by cloud-top temperatures >−20°C, fewer larger droplets, higher liquid water content, and lower ice water content compared to the other events. Cases with minimal background natural snowfall also permitted radar observation of seeding lines. In these cases, cloud seeding was mainly responsible for snowfall. The amount of silver iodide (AgI) released during cloud seeding did not correlate well with snowfall amount and rate. Significance StatementThis study illustrates the complexities of estimating snowfall in wintertime orographic clouds, underscoring the frequent inefficiency of these clouds in generating snowfall—a pivotal concern for regions dependent on snowpack for water resources. By analyzing environmental and cloud characteristics against snowfall patterns during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE), the research provides critical insights into the complexities of precipitation formation. The findings, particularly on the impact of cloud seeding in enhancing snowfall under specific conditions, contribute significantly to our understanding of weather modification techniques. This research not only is vital for advancing scientific knowledge in understanding wintertime mountain cloud systems but also holds profound implications for water resource management, agriculture, and disaster preparedness in snow-dependent regions. 
    more » « less
  2. Abstract Recent studies from the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) demonstrated definitive radar evidence of seeding signatures in winter orographic clouds during three intensive operation periods (IOPs) where the background signal from natural precipitation was weak and a radar signal attributable to seeding could be identified as traceable seeding lines. Except for the three IOPs where seeding was detected, background natural snowfall was present during seeding operations and no clear seeding signatures were detected. This paper provides a quantitative analysis to assess if orographic cloud seeding effects are detectable using radar when background precipitation is present. We show that a 5-dB change in equivalent reflectivity factorZeis required to stand out against background naturalZevariability. This analysis considers four radar wavelengths, a range of background ice water contents (IWC) from 0.012 to 1.214 g m−3, and additional IWC introduced by seeding ranging from 0.012 to 0.486 g m−3. The upper-limit values of seeded IWC are based on measurements of IWC from the Nevzorov probe employed on the University of Wyoming King Air aircraft during SNOWIE. This analysis implies that seeding effects will be undetectable using radar within background snowfall unless the background IWC is small, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally produced precipitation. Significance StatementOperational glaciogenic seeding programs targeting wintertime orographic clouds are funded by a range of stakeholders to increase snowpack. Glaciogenic seeding signatures have been observed by radar when natural background snowfall is weak but never when heavy background precipitation was present. This analysis quantitatively shows that seeding effects will be undetectable using radar reflectivity under conditions of background snowfall unless the background snowfall is weak, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally produced precipitation. Alternative assessment methods such as trace element analysis in snow, aircraft measurements, precipitation measurements, and modeling should be used to determine the efficacy of orographic cloud seeding when heavy background precipitation is present. 
    more » « less
  3. Abstract Cloud seeding has been widely used for enhancing wintertime snowfall, particularly to augment water resources. This study examines microphysical responses to airborne glaciogenic seeding with silver iodide (AgI) during a specific case from the Seeded and Natural Orographic Wintertime Clouds: Idaho Experiment (SNOWIE) on 11 January 2017. Ground-based and airborne remote sensing and in situ measurements were employed to assess the impact of cloud seeding on cloud properties and precipitation formation. On 11th January, AgI propagated downwind along prevailing winds, and any potential ice and snow particles created from it were identified by ground-based radar as zigzag lines of enhanced reflectivity compared to background reflectivity. As the aircraft flew several times through these seeded clouds, microphysical properties within seeded clouds can be compared to those observed in unseeded clouds. The results indicate that seeded clouds exhibited significantly enhanced ice water content (IWC; reaching up to 0.20 g m−3) and precipitating-size (>400μm) ice particle concentrations (>7 L−1) relative to unseeded clouds. Additionally, seeded clouds exhibited a 30% decrease in the mean liquid water content (LWC) and cloud droplet concentrations, indicating efficient glaciation processes influenced by AgI. Precipitating snow development in seeded clouds occurred within 15–40 min following AgI release, marked by a transition from mixed-phase clouds with abundant supercooled liquid water (SLW) to ice clouds, with lidar-measured linear depolarization ratio (LDR) increasing to >0.3. These findings underscore the effectiveness of cloud seeding in enhancing snowfall by facilitating ice initiation and growth. Significance StatementThis study investigates the microphysical response of wintertime orographic clouds to airborne glaciogenic seeding, highlighting its role in enhancing precipitation. By introducing silver iodide (AgI) into clouds with supercooled liquid water, the seeding process facilitates ice particle formation, leading to increased snowfall. Through a detailed analysis of microphysical conditions using advanced in situ and remote sensing instruments, the study reveals enhanced ice water content and efficient conversion of liquid water to ice in seeded clouds. These findings provide critical insights into cloud-seeding efficacy, particularly in regions with abundant supercooled liquid water, offering a scientific foundation for enhancing snowpack in water-scarce mountainous areas. 
    more » « less
  4. Abstract Kelvin–Helmholtz instability (KH) waves have been broadly shown to affect the growth of hydrometeors within a region of falling precipitation, but formation and growth from KH waves at cloud top needs further attention. Here, we present detailed observations of cloud-top KH waves that produced a snow plume that extended to the surface. Airborne transects of cloud radar aligned with range height indicator scans from ground-based precipitation radar track the progression and intensity of the KH wave kinetics and precipitation. In situ cloud probes and surface disdrometer measurements are used to quantify the impact of the snow plume on the composition of an underlying supercooled liquid water (SLW) cloud and the snowfall observed at the surface. KH wavelengths of 1.5 km consisted of ∼750-m-wide up- and downdrafts. A distinct fluctus region appeared as a wave-breaking cloud top where the fastest updraft was observed to exceed 5 m s−1. Relatively weaker updrafts of 0.5–1.5 m s−1beneath the fluctus and partially overlapping the dendritic growth zone were associated with steep gradients in reflectivity of −5 to 20 dBZein as little as 500-m depths due to rapid growth of pristine planar ice crystals. The falling snow removed ∼80% of the SLW content from the underlying cloud and led to a twofold increase in surface liquid equivalent snowfall rate from 0.6 to 1.3 mm h−1. This paper presents the first known study of cloud-top KH waves producing snowfall with observations of increased snowfall rates at the surface. 
    more » « less
  5. null (Ed.)
    Abstract The spatial distribution and magnitude of snowfall resulting from cloud seeding with silver iodide (AgI) is closely linked to atmospheric conditions, seeding operations, and dynamical, thermodynamical, and microphysical processes. Here, microphysical processes leading to ice and snow production are analyzed in orographic clouds for three cloud-seeding events, each with light or no natural precipitation and well-defined, traceable seeding lines. Airborne and ground-based radar observations are linked to in situ cloud and precipitation measurements to determine the spatiotemporal evolution of ice initiation, particle growth, and snow fallout in seeded clouds. These processes and surface snow amounts are explored as particle plumes evolve from varying amounts of AgI released, and within changing environmental conditions, including changes in liquid water content (LWC) along and downwind of the seeding track, wind speed, and shear. More AgI did not necessarily produce more liquid equivalent snowfall (LESnow). The greatest amount of LESnow, largest area covered by snowfall, and highest peak snowfall produced through seeding occurred on the day with the largest and most widespread occurrence of supercooled drizzle, highest wind shear, and greater LWC along and downwind of the seeding track. The day with the least supercooled drizzle and the lowest LWC downwind of the seeding track produced the smallest amount of LESnow through seeding. The stronger the wind was, the farther away the snowfall occurred from the seeding track. 
    more » « less