skip to main content


Title: Exploiting hydrophobicity and hydrophilicity in nanopores as a design principle for “smart” MOF microtanks for methane storage
Widespread use of methane-powered vehicles likely requires the development of efficient on-board methane storage systems. A novel concept for methane storage is the nanoporous microtank, which is based on a millimeter-sized nanoporous pellet (the core) surrounded by an ultrathin membrane (the shell). Mixture adsorption simulations in idealized pores indicate that by combining a pellet that features large, hydrophobic pores with a membrane featuring small, hydrophilic pores, it would be possible to trap a large amount of “pressurized” methane in the pellet while keeping the external pressure low. The methane would be trapped by sealing the surrounding membrane with the adsorption of a hydrophilic compound such as methanol. Additional simulations in over 2000 hypothesized metal–organic frameworks (MOFs) indicate that the above design concept could be exploited using real nanoporous materials. Structure–property relationships derived from these simulations indicate that MOFs suitable for the core (storing over 250 cc(STP) CH4 per cc) should have a pore size in the 12–14 Å range and linkers without appreciably hydrophilic moieties. On the other hand, MOFs suitable for the shell should have a pore size less than 9 Å and linkers with hydrophilic functional groups such as –CN, –NO 2 , –OH and –NH 2 . Simulation snapshots suggest that the hydrogen bonding between these groups and hydrophilic moieties of methanol would be critical for the sealing function.  more » « less
Award ID(s):
1846707
NSF-PAR ID:
10136381
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
5
Issue:
1
ISSN:
2058-9689
Page Range / eLocation ID:
166 to 176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In nanoporous rocks, potential size/mobility exclusion and fluid-rock interactions in nano-sized pores and pore throats may turn the rock into a semi-permeable membrane, blocking or hindering the passage of certain molecules while allowing other molecules to pass freely. In this work, we conducted several experiments to investigate whether Niobrara samples possess such sieving properties on hydrocarbon molecules. Molecular dynamics simulation of hydrocarbon adsorption was performed to help understand the trends observed in the experiments. The procedure of the experiments includes pumping of liquid binary hydrocarbon mixtures (C10, C17) of known compositions into Niobrara samples, collecting of the effluents from the samples, and analysis of the compositions of the effluents. A specialized experimental setup that uses an in-line filter as a mini-core holder was built for this investigation. Niobrara samples were cored and machined into 0.5-inch diameter and 0.7-inch length mini-cores. Hydrocarbon mixtures were injected into the mini-cores and effluents were collected periodically and analyzed using gas chromatography. To understand the potential effects of hydrocarbon-rock interactions on their transport, molecular dynamics simulations were performed to clarify the adsorption of C10 and C17 molecules on calcite surfaces using all-atom models. Experimental results show that the heavier component (C17) in the injected fluid was noticeably hindered. After the start of the experiment, the fraction of the lighter component (C10) in the produced fluid gradually increased and eventually reached levels that fluctuated within a range above the fraction of C10 in the original fluid; besides, the fraction of C17 increased in the fluid upstream of the sample. Both observations indicate the presence of membrane properties of the sample to this hydrocarbon mixture. Simulation results suggest that, for a calcite surface in equilibrium with a binary mixture of C10 and C17, more C17 molecules adsorb on the carbonate surface than the C10 molecules, providing a mechanism that directly supports the experimental observations. Some experimental observations suggest that size/mobility exclusion should also exist. This experimental study is the first evidence that nanoporous reservoir rocks may possess membrane properties that can filter hydrocarbon molecules. Component separation due to membrane properties has not been considered in any reservoir simulation models. The consequence of this effect and its dependence on the mixture and environmental conditions (surface, pressure, temperature) are worthy of further investigations. 
    more » « less
  2. Abstract

    Efficient separation of C2H4/C2H6mixtures is of paramount importance in the petrochemical industry. Nanoporous materials, especially metal-organic frameworks (MOFs), may serve the purpose owing to their tailorable structures and pore geometries. In this work, we propose a computational framework for high-throughput screening and inverse design of high-performance MOFs for adsorption and membrane processes. High-throughput screening of the computational-ready, experimental (CoRE 2019) MOF database leads to materials with exceptionally high ethane-selective adsorption selectivity (LUDLAZ: 7.68) and ethene-selective membrane selectivity (EBINUA02: 2167.3). Moreover, the inverse design enables the exploration of broader chemical space and identification of MOF structures with even higher membrane selectivity and permeability. In addition, a relative membrane performance score (rMPS) has been formulated to evaluate the overall membrane performance relative to the Robeson boundary. The computational framework offers guidelines for the design of MOFs and is generically applicable to materials discovery for gas storage and separation.

     
    more » « less
  3. Hydrogen (H2) is largely regarded as a potential cost-efficient clean fuel primarily due to its beneficial properties, such as its high energy content and sustainability. With the rising demand for H2 in the past decades and its favorable characteristics as an energy carrier, the escalating USA consumption of pure H2 can be projected to reach 63 million tons by 2050. Despite the tremendous potential of H2 generation and its widespread application, transportation and storage of H2 have remained the major challenges of a sustainable H2 economy. Various efforts have been undertaken by storing H2 in activated carbons, metal organic frameworks (MOFs), covalent organic frameworks (COFs), etc. Recently, the literature has been stressing the need to develop biomass-based activated carbons as an effective H2 storage material, as these are inexpensive adsorbents with tunable chemical, mechanical, and morphological properties. This article reviews the current research trends and perspectives on the role of various properties of biomass-based activated carbons on its H2 uptake capacity. The critical aspects of the governing factors of H2 storage, namely, the surface morphology (specific surface area, pore volume, and pore size distribution), surface functionality (heteroatom and functional groups), physical condition of H2 storage (temperature and pressure), and thermodynamic properties (heat of adsorption and desorption), are discussed. A comprehensive survey of the literature showed that an “ideal” biomass-based activated carbon sorbent with a micropore size typically below 10 Å, micropore volume greater than 1.5 cm3/g, and high surface area of 4000 m2/g or more may help in substantial gravimetric H2 uptake of >10 wt% at cryogenic conditions (−196 °C), as smaller pores benefit by stronger physisorption due to the high heat of adsorption. 
    more » « less
  4. Abstract

    Thermal energy management in metal-organic frameworks (MOFs) is an important, yet often neglected, challenge for many adsorption-based applications such as gas storage and separations. Despite its importance, there is insufficient understanding of the structure-property relationships governing thermal transport in MOFs. To provide a data-driven perspective into these relationships, here we perform large-scale computational screening of thermal conductivitykin MOFs, leveraging classical molecular dynamics simulations and 10,194 hypothetical MOFs created using the ToBaCCo 3.0 code. We found that high thermal conductivity in MOFs is favored by high densities (> 1.0 g cm−3), small pores (< 10 Å), and four-connected metal nodes. We also found that 36 MOFs exhibit ultra-low thermal conductivity (< 0.02 W m−1 K−1), which is primarily due to having extremely large pores (~65 Å). Furthermore, we discovered six hypothetical MOFs with very high thermal conductivity (> 10 W m−1 K−1), the structures of which we describe in additional detail.

     
    more » « less
  5. Continued integration of technologies capable of achieving higher degrees of sustainability while meeting global material and energy demands is of singular importance in halting human-caused climate change. Gas separation membranes composed of metal–organic frameworks (MOFs) are considered promising candidates for such integration; owing to their modular, scalable nature and high degree of tunability they are seen essential to maintain separation functionality. However, prior to sustainable implementation, both an evaluation of MOF characteristics and an intensive examination of MOF–gas molecule interactions are necessary to fully understand the fundamental separation criteria as well as to define suitable ranges of gas separation conditions. Herein, we present our findings on the greenhouse gas separation capabilities of the hydrophilic, Al-based MIL-160 in the selective uptake of carbon dioxide (CO 2 ) from other relevant greenhouse gases, i.e. , methane (CH 4 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and nitric oxide (NO), including gravimetric solubility, permeability, and diffusivity calculations. We found that a MIL-160 membrane has excellent applicability in the separation of gases of varying electronegativities, with a diffusivity selectivity of 72.0, 9.53, and 13.8 for CH 4 , NO 2 , and NO, respectively, relative to CO 2 . Further, we demonstrate that the selectivity at which gas molecules diffuse through the MIL-160 membrane varies strongly with the simulation pressure, suggesting that such membrane system is potentially an ideal candidate for the development of pressure-swing adsorption processes that achieve gas separations efficiently while mitigating the emission of greenhouse gases. 
    more » « less