skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In situ synthesis and in operando NMR studies of a high-performance Ni 5 P 4 -nanosheet anode
Nickel phosphide (Ni 5 P 4 ) nanosheets are synthesized using in situ chemical vapor deposition of P on Ni foam. The thickness of the as-synthesized Ni 5 P 4 film is determined to be ∼5 nm, using atomic force microscopy (AFM). The small thickness shortens the diffusion path of Li ions and results in fast ion transport. In addition, the 2D Ni 5 P 4 nanosheets seamlessly connect to the Ni foam, which facilitates electron transfer between Ni 5 P 4 and the Ni current collector. Therefore, the binder/carbon free-nickel supported Ni 5 P 4 shows fast rate performance as an anode for lithium-ion batteries (LIBs). The specific capacity of 2D Ni 5 P 4 is obtained as 600 mA h g −1 at a cycling rate of 0.1C, approaching the theoretical capacity of 768 mA h g −1 . Even at a rate of 0.5C, the capacity remains as 450 mA h g −1 over 100 cycles. A capacity >100 mA h g −1 is retained at a very high rate of 20C. Ni 5 P 4 also exhibits a low voltage of ∼0.5 V with respect to Li metal, which makes it a suitable negative electrode for LIBs. In operando 31 P NMR and 7 Li NMR are employed to probe the lithiation and de-lithiation mechanisms upon electrochemical cycling.  more » « less
Award ID(s):
1808517
PAR ID:
10136462
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
6
Issue:
44
ISSN:
2050-7488
Page Range / eLocation ID:
22240 to 22247
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ternary MAB phases (layered transition metal borides) have recently attracted interest due to their exfoliation potential toward MBenes (analogous to MXenes), which are predicted to have excellent Li-ion battery performance. We have achieved single-phase synthesis of two MAB phases with general composition Ni n+1 ZnB n ( n = 1, 2), the crystal structures of which contain zinc layers sandwiched between thin ( n = 1) and thick ( n = 2) Ni–B slabs. Highly stacked MAB sheets were confirmed by X-ray diffraction and high-resolution scanning electron microscopy for both materials. Exposing Ni n+1 ZnB n to diluted hydrochloric acid led to the creation of crystalline microporous structures for n = 1 and non-porous detached sheets for n = 2. Both morphologies transformed the inactive bulk materials into highly active Li-ion battery anodes with capacities of ∼90 mA h g −1 ( n = 1) and ∼70 mA h g −1 ( n = 2) at a 100 mA g −1 lithiation–delithiation rate. The XPS analysis and BET surface area measurements reveal that the increased surface area and the reversible redox reaction of oxidized nickel species are responsible for this drastic increase of the lithiation–delithiation capacity. This proof of concept opens new avenues for the development of porous MAB, MAB nanosheets, MBenes and their composites for metal-ion battery applications. 
    more » « less
  2. Manganese dioxide (MnO 2 ) with a conversion mechanism is regarded as a promising anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity (∼1223 mA h g −1 ) and environmental benignity as well as low cost. However, it suffers from insufficient rate capability and poor cyclic stability. To circumvent this obstacle, semiconducting polypyrrole coated-δ-MnO 2 nanosheet arrays on nickel foam (denoted as MnO 2 @PPy/NF) are prepared via hydrothermal growth of MnO 2 followed by the electrodeposition of PPy on the anode in LIBs. The electrode with ∼50 nm thick PPy coating exhibits an outstanding overall electrochemical performance. Specifically, a high rate capability is obtained with ∼430 mA h g −1 of discharge capacity at a high current density of 2.67 A g −1 and more than 95% capacity is retained after over 120 cycles at a current rate of 0.86 A g −1 . These high electrochemical performances are attributed to the special structure which shortens the ion diffusion pathway, accelerates charge transfer, and alleviates volume change in the charging/discharging process, suggesting a promising route for designing a conversion-type anode material for LIBs. 
    more » « less
  3. Abstract Si‐based anodes with a stiff diamond structure usually suffer from sluggish lithiation/delithiation reaction due to low Li‐ion and electronic conductivity. Here, a novel ternary compound ZnSi2P3with a cation‐disordered sphalerite structure, prepared by a facile mechanochemical method, is reported, demonstrating faster Li‐ion and electron transport and greater tolerance to volume change during cycling than the existing Si‐based anodes. A composite electrode consisting of ZnSi2P3and carbon achieves a high initial Coulombic efficiency (92%) and excellent rate capability (950 mAh g−1at 10 A g−1) while maintaining superior cycling stability (1955 mAh g−1after 500 cycles at 300 mA g−1), surpassing the performance of most Si‐ and P‐based anodes ever reported. The remarkable electrochemical performance is attributed to the sphalerite structure that allows fast ion and electron transport and the reversible Li‐storage mechanism involving intercalation and conversion reactions. Moreover, the cation‐disordered sphalerite structure is flexible to ionic substitutions, allowing extension to a family of Zn(Cu)Si2+xP3solid solution anodes (x= 0, 2, 5, 10) with large capacity, high initial Coulombic efficiency, and tunable working potentials, representing attractive anode candidates for next‐generation, high‐performance, and low‐cost Li‐ion batteries. 
    more » « less
  4. Biomass-derived materials offer low carbon approaches to energy storage. High surface area SiC w/wo 13 wt% hard carbon (SiC/HC, SiC/O), derived from carbothermal reduction of silica depleted rice hull ash (SDRHA), can function as Li+ battery anodes. Galvanostatic cycling of SiC/HC and SiC/O shows capacity increases eventually to >950 mA h g−1 (Li1.2–1.4SiC) and >740 mA h g−1 (Li1.1SiC), respectively, after 600 cycles. Post-mortem investigation via XRD and 29Si MAS NMR reveals partial phase transformation from 3C- to 6H-SiC, with no significant changes in unit cell size. SEMs show cycled electrodes maintain their integrity, implying almost no volume expansion on lithiation/delithiation, contrasting with >300% volume changes in Si anodes on lithiation. Significant void space is needed to compensate for these volume changes with Si in contrast to SiC anodes suggesting nearly competitive capacities. 6Li MAS NMR and XPS show no evidence of LixSi, with Li preferring all-C environments supported by computational modeling. Modeling also supports deviation from the 3C phase at high Li contents with minimal volume changes. 
    more » « less
  5. Aqueous zinc ion batteries (ZIBs) are emerging as a highly promising alternative technology for grid-scale applications where high safety, environmental-friendliness, and high specific capacities are needed. It remains a significant challenge, however, to develop a cathode with a high rate capability and long-term cycling stability. Here, we demonstrate diffusion-controlled behavior in the intercalation of zinc ions into highly porous, Mn 4+ -rich, and low-band-gap Ni x Mn 3−x O 4 nano-particles with a carbon matrix formed in situ (with the composite denoted as Ni x Mn 3−x O 4 @C, x = 1), which exhibits superior rate capability (139.7 and 98.5 mA h g −1 at 50 and 1200 mA g −1 , respectively) and outstanding cycling stability (128.8 mA h g −1 remaining at 400 mA g −1 after 850 cycles). Based on the obtained experimental results and density functional theory (DFT) calculations, cation-site Ni substitution combined with a sufficient doping concentration can decrease the band gap and effectively improve the electronic conductivity in the crystal. Furthermore, the amorphous carbon shell and highly porous Mn 4+ -rich structure lead to fast electron transport and short Zn 2+ diffusion paths in a mild aqueous electrolyte. This study provides an example of a technique to optimize cathode materials for high-performance rechargeable ZIBs and design advanced intercalation-type materials for other energy storage devices. 
    more » « less