skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: EARSHOT: A minimal network model of human speech recognition that operates on real speech
Despite the lack of invariance problem (the many-to-many mapping between acoustics and percepts), we experience phonetic constancy and typically perceive what a speaker intends. Models of human speech recognition have side- stepped this problem, working with abstract, idealized inputs and deferring the challenge of working with real speech. In contrast, automatic speech recognition powered by deep learning networks have allowed robust, real-world speech recognition. However, the complexities of deep learning architectures and training regimens make it difficult to use them to provide direct insights into mechanisms that may support human speech recognition. We developed a simple network that borrows one element from automatic speech recognition (long short-term memory nodes, which provide dynamic memory for short and long spans). This allows the network to learn to map real speech from multiple talkers to semantic targets with high accuracy. Internal representations emerge that resemble phonetically-organized responses in human superior temporal gyrus, suggesting that the model develops a distributed phonological code despite no explicit training on phonetic or phonemic targets. The ability to work with real speech is a major advance for cognitive models of human speech recognition.  more » « less
Award ID(s):
1754284
PAR ID:
10137127
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Cognitive Science Society
Page Range / eLocation ID:
2248-2253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite thelack of invariance problem(the many‐to‐many mapping between acoustics and percepts), human listeners experience phonetic constancy and typically perceive what a speaker intends. Most models of human speech recognition (HSR) have side‐stepped this problem, working with abstract, idealized inputs and deferring the challenge of working with real speech. In contrast, carefully engineered deep learning networks allow robust, real‐world automatic speech recognition (ASR). However, the complexities of deep learning architectures and training regimens make it difficult to use them to provide direct insights into mechanisms that may support HSR. In this brief article, we report preliminary results from a two‐layer network that borrows one element from ASR,long short‐term memorynodes, which provide dynamic memory for a range of temporal spans. This allows the model to learn to map real speech from multiple talkers to semantic targets with high accuracy, with human‐like timecourse of lexical access and phonological competition. Internal representations emerge that resemble phonetically organized responses in human superior temporal gyrus, suggesting that the model develops a distributed phonological code despite no explicit training on phonetic or phonemic targets. The ability to work with real speech is a major advance for cognitive models of HSR. 
    more » « less
  2. Audio-based human activity recognition (HAR) is very popular because many human activities have unique sound signatures that can be detected using machine learning (ML) approaches. These audio-based ML HAR pipelines often use common featurization techniques, such as extracting various statistical and spectral features by converting time domain signals to the frequency domain (using an FFT) and using them to train ML models. Some of these approaches also claim privacy benefits by preventing the identification of human speech. However, recent deep learning-based automatic speech recognition (ASR) models pose new privacy challenges to these featurization techniques. In this paper, we systematically evaluate various featurization approaches for audio data, assessing their privacy risks through metrics like speech intelligibility (PER and WER) while considering the utility tradeoff in terms of ML-based activity recognition accuracy. Our findings reveal the susceptibility of these approaches to speech content recovery when exposed to recent ASR models, especially under re-tuning or retraining conditions. Notably, fine-tuned ASR models achieved an average Phoneme Error Rate (PER) of 39.99% and Word Error Rate (WER) of 44.43% in speech recognition for these approaches. To overcome these privacy concerns, we propose Kirigami, a lightweight machine learning-based audio speech filter that removes human speech segments reducing the efficacy of ASR models (70.48% PER and 101.40% WER) while also maintaining HAR accuracy (76.0% accuracy). We show that Kirigami can be implemented on common edge microcontrollers with limited computational capabilities and memory, providing a path to deployment on a variety of IoT devices. Finally, we conducted a real-world user study and showed the robustness of Kirigami on a laptop and an ARM Cortex-M4F microcontroller under three different background noises. 
    more » « less
  3. State of the art models in automatic speech recognition have shown remarkable improvements due to modern self-supervised (SSL) transformer-based architectures such as wav2vec 2.0 (Baevski et al., 2020). However, how these models encode phonetic information is still not well understood. We explore whether SSL speech models display a linguistic property that characterizes human speech perception: language specificity. We show that while wav2vec 2.0 displays an overall language specificity effect when tested on Hindi vs. English, it does not resemble human speech perception when tested on finer-grained differences in Hindi speech contrasts. 
    more » « less
  4. The way listeners perceive speech sounds is largely determined by the language(s) they were exposed to as a child. For example, native speakers of Japanese have a hard time discriminating between American English /ɹ/ and /l/, a phonetic contrast that has no equivalent in Japanese. Such effects are typically attributed to knowledge of sounds in the native language, but quantitative models of how these effects arise from linguistic knowledge are lacking. One possible source for such models is Automatic Speech Recognition (ASR) technology. We implement models based on two types of systems from the ASR literature—hidden Markov models (HMMs) and the more recent, and more accurate, neural network systems—and ask whether, in addition to showing better performance, the neural network systems also provide better models of human perception. We find that while both types of systems can account for Japanese natives’ difficulty with American English /ɹ/ and /l/, only the neural network system successfully accounts for Japanese natives’ facility with Japanese vowel length contrasts. Our work provides a new example, in the domain of speech perception, of an often observed correlation between task performance and similarity to human behavior. 
    more » « less
  5. The ability to identify speech with similar emotional content is valuable to many applications, including speech retrieval, surveillance, and emotional speech synthesis. While current formulations in speech emotion recognition based on classification or regression are not appropriate for this task, solutions based on preference learning offer appealing approaches for this task. This paper aims to find speech samples that are emotionally similar to an anchor speech sample provided as a query. This novel formulation opens interesting research questions. How well can a machine complete this task? How does the accuracy of automatic algorithms compare to the performance of a human performing this task? This study addresses these questions by training a deep learning model using a triplet loss function, mapping the acoustic features into an embedding that is discriminative for this task. The network receives an anchor speech sample and two competing speech samples, and the task is to determine which of the candidate speech sample conveys the closest emotional content to the emotion conveyed by the anchor. By comparing the results from our model with human perceptual evaluations, this study demonstrates that the proposed approach has performance very close to human performance in retrieving samples with similar emotional content. 
    more » « less