skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural network vs. HMM speech recognition systems as models of human cross-linguistic phonetic perception
The way listeners perceive speech sounds is largely determined by the language(s) they were exposed to as a child. For example, native speakers of Japanese have a hard time discriminating between American English /ɹ/ and /l/, a phonetic contrast that has no equivalent in Japanese. Such effects are typically attributed to knowledge of sounds in the native language, but quantitative models of how these effects arise from linguistic knowledge are lacking. One possible source for such models is Automatic Speech Recognition (ASR) technology. We implement models based on two types of systems from the ASR literature—hidden Markov models (HMMs) and the more recent, and more accurate, neural network systems—and ask whether, in addition to showing better performance, the neural network systems also provide better models of human perception. We find that while both types of systems can account for Japanese natives’ difficulty with American English /ɹ/ and /l/, only the neural network system successfully accounts for Japanese natives’ facility with Japanese vowel length contrasts. Our work provides a new example, in the domain of speech perception, of an often observed correlation between task performance and similarity to human behavior.  more » « less
Award ID(s):
1734245
PAR ID:
10071711
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the Conference on Cognitive Computational Neuroscience
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Before they even speak, infants become attuned to the sounds of the language(s) they hear, processing native phonetic contrasts more easily than nonnative ones. For example, between 6 to 8 mo and 10 to 12 mo, infants learning American English get better at distinguishing English and [l], as in “rock” vs. “lock,” relative to infants learning Japanese. Influential accounts of this early phonetic learning phenomenon initially proposed that infants group sounds into native vowel- and consonant-like phonetic categories—like and [l] in English—through a statistical clustering mechanism dubbed “distributional learning.” The feasibility of this mechanism for learning phonetic categories has been challenged, however. Here, we demonstrate that a distributional learning algorithm operating on naturalistic speech can predict early phonetic learning, as observed in Japanese and American English infants, suggesting that infants might learn through distributional learning after all. We further show, however, that, contrary to the original distributional learning proposal, our model learns units too brief and too fine-grained acoustically to correspond to phonetic categories. This challenges the influential idea that what infants learn are phonetic categories. More broadly, our work introduces a mechanism-driven approach to the study of early phonetic learning, together with a quantitative modeling framework that can handle realistic input. This allows accounts of early phonetic learning to be linked to concrete, systematic predictions regarding infants’ attunement. 
    more » « less
  2. Purpose The “bubble noise” technique has recently been introduced as a method to identify the regions in time–frequency maps (i.e., spectrograms) of speech that are especially important for listeners in speech recognition. This technique identifies regions of “importance” that are specific to the speech stimulus and the listener, thus permitting these regions to be compared across different listener groups. For example, in cross-linguistic and second-language (L2) speech perception, this method identifies differences in regions of importance in accomplishing decisions of phoneme category membership. This research note describes the application of bubble noise to the study of language learning for 3 different language pairs: Hindi English bilinguals' perception of the /v/–/w/ contrast in American English, native English speakers' perception of the tense/lax contrast for Korean fricatives and affricates, and native English speakers' perception of Mandarin lexical tone. Conclusion We demonstrate that this technique provides insight on what information in the speech signal is important for native/first-language listeners compared to nonnative/L2 listeners. Furthermore, the method can be used to examine whether L2 speech perception training is effective in bringing the listener's attention to the important cues. 
    more » « less
  3. We evaluate several publicly available off-the-shelf (commercial and research) automatic speech recognition (ASR) systems on dialogue agent-directed English speech from speakers with General American vs. non-American accents. Our results show that the performance of the ASR systems for non-American accents is considerably worse than for General American accents. Depending on the recognizer, the absolute difference in performance between General American accents and all non-American accents combined can vary approximately from 2% to 12%, with relative differences varying approximately between 16% and 49%. This drop in performance becomes even larger when we consider specific categories of non-American accents indicating a need for more diligent collection of and training on non-native English speaker data in order to narrow this performance gap. There are performance differences across ASR systems, and while the same general pattern holds, with more errors for non-American accents, there are some accents for which the best recognizer is different than in the overall case. We expect these results to be useful for dialogue system designers in developing more robust inclusive dialogue systems, and for ASR providers in taking into account performance requirements for different accents. 
    more » « less
  4. Learning to process speech in a foreign language involves learning new representations for mapping the auditory signal to linguistic structure. Behavioral experiments suggest that even listeners that are highly proficient in a non-native language experience interference from representations of their native language. However, much of the evidence for such interference comes from tasks that may inadvertently increase the salience of native language competitors. Here we tested for neural evidence of proficiency and native language interference in a naturalistic story listening task. We studied electroencephalography responses of 39 native speakers of Dutch (14 male) to an English short story, spoken by a native speaker of either American English or Dutch. We modeled brain responses with multivariate temporal response functions, using acoustic and language models. We found evidence for activation of Dutch language statistics when listening to English, but only when it was spoken with a Dutch accent. This suggests that a naturalistic, monolingual setting decreases the interference from native language representations, whereas an accent in the listener's own native language may increase native language interference, by increasing the salience of the native language and activating native language phonetic and lexical representations. Brain responses suggest that such interference stems from words from the native language competing with the foreign language in a single word recognition system, rather than being activated in a parallel lexicon. We further found that secondary acoustic representations of speech (after 200 ms latency) decreased with increasing proficiency. This may reflect improved acoustic–phonetic models in more proficient listeners. Significance StatementBehavioral experiments suggest that native language knowledge interferes with foreign language listening, but such effects may be sensitive to task manipulations, as tasks that increase metalinguistic awareness may also increase native language interference. This highlights the need for studying non-native speech processing using naturalistic tasks. We measured neural responses unobtrusively while participants listened for comprehension and characterized the influence of proficiency at multiple levels of representation. We found that salience of the native language, as manipulated through speaker accent, affected activation of native language representations: significant evidence for activation of native language (Dutch) categories was only obtained when the speaker had a Dutch accent, whereas no significant interference was found to a speaker with a native (American) accent. 
    more » « less
  5. RNN Tranducer (RNN-T) technology is very popular for building deployable models for end-to-end (E2E) automatic speech recognition (ASR) and spoken language understanding (SLU). Since these are E2E models operating on speech directly, there remains a potential to improve their performance using purely text based models like BERT, which have strong language understanding capabilities. In this paper, we propose a new training criteria for RNN-T based E2E ASR and SLU to transfer BERT’s knowledge into these systems. In the first stage of our proposed mechanism, we improve ASR performance by using a fine-grained, tokenwise knowledge transfer from BERT. In the second stage, we fine-tune the ASR model for SLU such that the above knowledge is explicitly utilized by the RNN-T model for improved performance. Our techniques improve ASR performance on the Switchboard and CallHome test sets of the NIST Hub5 2000 evaluation and on the recently released SLURP dataset on which we achieve a new state-of-the-art performance. For SLU, we show significant improvements on the SLURP slot filling task, outperforming HuBERT-base and reaching a performance close to HuBERTlarge. Compared to large transformer based speech models like HuBERT, our model is significantly more compact and uses only 300 hours of speech pretraining data. 
    more » « less