skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Does predictive processing imply predictive coding in models of spoken word recognition?
Pervasive behavioral and neural evidence for predictive processing has led to claims that language processing depends upon predictive coding. In some cases, this may reflect a conflation of terms, but predictive coding formally is a computational mechanism where only deviations from top- down expectations are passed between levels of representation. We evaluate three models’ ability to simulate predictive processing and ask whether they exhibit the putative hallmark of formal predictive coding (reduced signal when input matches expectations). Of crucial interest, TRACE, an interactive activation model that does not explicitly implement prediction, exhibits both predictive processing and model- internal signal reduction. This may indicate that interactive activation is functionally equivalent or approximant to predictive coding, or that caution is warranted in interpreting neural signal reduction as diagnostic of predictive coding.  more » « less
Award ID(s):
1754284
PAR ID:
10137128
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Cognitive Science Society
Page Range / eLocation ID:
735-740
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Pervasive behavioral and neural evidence for predictive processing has led to claims that language processing depends upon predictive coding. Formally, predictive coding is a computational mechanism where only deviations from top-down expectations are passed between levels of representation. In many cognitive neuroscience studies, a reduction of signal for expected inputs is taken as being diagnostic of predictive coding. In the present work, we show that despite not explicitly implementing prediction, the TRACE model of speech perception exhibits this putative hallmark of predictive coding, with reductions in total lexical activation, total lexical feedback, and total phoneme activation when the input conforms to expectations. These findings may indicate that interactive activation is functionally equivalent or approximant to predictive coding or that caution is warranted in interpreting neural signal reduction as diagnostic of predictive coding. 
    more » « less
  2. null (Ed.)
    Biological neural networks face a formidable task: performing reliable computations in the face of intrinsic stochasticity in individual neurons, imprecisely specified synaptic connectivity, and nonnegligible delays in synaptic transmission. A common approach to combatting such biological heterogeneity involves averaging over large redundant networks of N neurons resulting in coding errors that decrease classically as the square root of N. Recent work demonstrated a novel mechanism whereby recurrent spiking networks could efficiently encode dynamic stimuli achieving a superclassical scaling in which coding errors decrease as 1/N. This specific mechanism involved two key ideas: predictive coding, and a tight balance, or cancellation between strong feedforward inputs and strong recurrent feedback. However, the theoretical principles governing the efficacy of balanced predictive coding and its robustness to noise, synaptic weight heterogeneity and communication delays remain poorly understood. To discover such principles, we introduce an analytically tractable model of balanced predictive coding, in which the degree of balance and the degree of weight disorder can be dissociated unlike in previous balanced network models, and we develop a mean-field theory of coding accuracy. Overall, our work provides and solves a general theoretical framework for dissecting the differential contributions neural noise, synaptic disorder, chaos, synaptic delays, and balance to the fidelity of predictive neural codes, reveals the fundamental role that balance plays in achieving superclassical scaling, and unifies previously disparate models in theoretical neuroscience. 
    more » « less
  3. Cymbalyuk, Gennady S. (Ed.)
    Artificial neural networks are often interpreted as abstract models of biological neuronal networks, but they are typically trained using the biologically unrealistic backpropagation algorithm and its variants. Predictive coding has been proposed as a potentially more biologically realistic alternative to backpropagation for training neural networks. This manuscript reviews and extends recent work on the mathematical relationship between predictive coding and backpropagation for training feedforward artificial neural networks on supervised learning tasks. Implications of these results for the interpretation of predictive coding and deep neural networks as models of biological learning are discussed along with a repository of functions, Torch2PC, for performing predictive coding with PyTorch neural network models. 
    more » « less
  4. Rubin, Jonathan (Ed.)
    We introduce dynamic predictive coding, a hierarchical model of spatiotemporal prediction and sequence learning in the neocortex. The model assumes that higher cortical levels modulate the temporal dynamics of lower levels, correcting their predictions of dynamics using prediction errors. As a result, lower levels form representations that encode sequences at shorter timescales (e.g., a single step) while higher levels form representations that encode sequences at longer timescales (e.g., an entire sequence). We tested this model using a two-level neural network, where the top-down modulation creates low-dimensional combinations of a set of learned temporal dynamics to explain input sequences. When trained on natural videos, the lower-level model neurons developed space-time receptive fields similar to those of simple cells in the primary visual cortex while the higher-level responses spanned longer timescales, mimicking temporal response hierarchies in the cortex. Additionally, the network’s hierarchical sequence representation exhibited both predictive and postdictive effects resembling those observed in visual motion processing in humans (e.g., in the flash-lag illusion). When coupled with an associative memory emulating the role of the hippocampus, the model allowed episodic memories to be stored and retrieved, supporting cue-triggered recall of an input sequence similar to activity recall in the visual cortex. When extended to three hierarchical levels, the model learned progressively more abstract temporal representations along the hierarchy. Taken together, our results suggest that cortical processing and learning of sequences can be interpreted as dynamic predictive coding based on a hierarchical spatiotemporal generative model of the visual world. 
    more » « less
  5. Humans engagement in music rests on underlying elements such as the listeners’ cultural background and interest in music. These factors modulate how listeners anticipate musical events, a process inducing instantaneous neural responses as the music confronts these expectations. Measuring such neural correlates would represent a direct window into high-level brain processing. Here we recorded cortical signals as participants listened to Bach melodies. We assessed the relative contributions of acoustic versus melodic components of the music to the neural signal. Melodic features included information on pitch progressions and their tempo, which were extracted from a predictive model of musical structure based on Markov chains. We related the music to brain activity with temporal response functions demonstrating, for the first time, distinct cortical encoding of pitch and note-onset expectations during naturalistic music listening. This encoding was most pronounced at response latencies up to 350 ms, and in both planum temporale and Heschl’s gyrus. 
    more » « less