skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the relationship between predictive coding and backpropagation
Artificial neural networks are often interpreted as abstract models of biological neuronal networks, but they are typically trained using the biologically unrealistic backpropagation algorithm and its variants. Predictive coding has been proposed as a potentially more biologically realistic alternative to backpropagation for training neural networks. This manuscript reviews and extends recent work on the mathematical relationship between predictive coding and backpropagation for training feedforward artificial neural networks on supervised learning tasks. Implications of these results for the interpretation of predictive coding and deep neural networks as models of biological learning are discussed along with a repository of functions, Torch2PC, for performing predictive coding with PyTorch neural network models.  more » « less
Award ID(s):
1654268 1707400
PAR ID:
10335394
Author(s) / Creator(s):
Editor(s):
Cymbalyuk, Gennady S.
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
3
ISSN:
1932-6203
Page Range / eLocation ID:
e0266102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Backpropagation is widely used to train artificial neural networks, but its relationship to synaptic plasticity in the brain is unknown. Some biological models of backpropagation rely on feedback projections that are symmetric with feedforward connections, but experiments do not corroborate the existence of such symmetric backward connectivity. Random feedback alignment offers an alternative model in which errors are propagated backward through fixed, random backward connections. This approach successfully trains shallow models, but learns slowly and does not perform well with deeper models or online learning. In this study, we develop a meta-learning approach to discover interpretable, biologically plausible plasticity rules that improve online learning performance with fixed random feedback connections. The resulting plasticity rules show improved online training of deep models in the low data regime. Our results highlight the potential of meta-learning to discover effective, interpretable learning rules satisfying biological constraints. 
    more » « less
  2. Asynchronous event-driven computation and communication using spikes facilitate the realization of spiking neural networks (SNN) to be massively parallel, extremely energy efficient and highly robust on specialized neuromorphic hardware. However, the lack of a unified robust learning algorithm limits the SNN to shallow networks with low accuracies. Artificial neural networks (ANN), however, have the backpropagation algorithm which can utilize gradient descent to train networks which are locally robust universal function approximators. But backpropagation algorithm is neither biologically plausible nor neuromorphic implementation friendly because it requires: 1) separate backward and forward passes, 2) differentiable neurons, 3) high-precision propagated errors, 4) coherent copy of weight matrices at feedforward weights and the backward pass, and 5) non-local weight update. Thus, we propose an approximation of the backpropagation algorithm completely with spiking neurons and extend it to a local weight update rule which resembles a biologically plausible learning rule spike-timing-dependent plasticity (STDP). This will enable error propagation through spiking neurons for a more biologically plausible and neuromorphic implementation friendly backpropagation algorithm for SNNs. We test the proposed algorithm on various traditional and non-traditional benchmarks with competitive results. 
    more » « less
  3. Abstract Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability 1 . Deep-learning accelerators 2–9 aim to perform deep learning energy-efficiently, usually targeting the inference phase and often by exploiting physical substrates beyond conventional electronics. Approaches so far 10–22 have been unable to apply the backpropagation algorithm to train unconventional novel hardware in situ. The advantages of backpropagation have made it the de facto training method for large-scale neural networks, so this deficiency constitutes a major impediment. Here we introduce a hybrid in situ–in silico algorithm, called physics-aware training, that applies backpropagation to train controllable physical systems. Just as deep learning realizes computations with deep neural networks made from layers of mathematical functions, our approach allows us to train deep physical neural networks made from layers of controllable physical systems, even when the physical layers lack any mathematical isomorphism to conventional artificial neural network layers. To demonstrate the universality of our approach, we train diverse physical neural networks based on optics, mechanics and electronics to experimentally perform audio and image classification tasks. Physics-aware training combines the scalability of backpropagation with the automatic mitigation of imperfections and noise achievable with in situ algorithms. Physical neural networks have the potential to perform machine learning faster and more energy-efficiently than conventional electronic processors and, more broadly, can endow physical systems with automatically designed physical functionalities, for example, for robotics 23–26 , materials 27–29 and smart sensors 30–32 . 
    more » « less
  4. Exploding and vanishing gradient are both major problems often faced when an artificial neural network is trained with gradient descent. Inspired by the ubiquity and robustness of nonlinear oscillations in biological neural systems, we investigate the properties of their artificial counterpart, the stable limit cycle neural networks. Using a continuous time dynamical system interpretation of neural networks and backpropagation, we show that stable limit cycle neural networks have non-exploding gradients, and at least one effective non-vanishing gradient dimension. We conjecture that limit cycles can support the learning of long temporal dependence in both biological and artificial neural networks. 
    more » « less
  5. null (Ed.)
    Deep neural networks (DNNs) are known for extracting useful information from large amounts of data. However, the representations learned in DNNs are typically hard to interpret, especially in dense layers. One crucial issue of the classical DNN model such as multilayer perceptron (MLP) is that neurons in the same layer of DNNs are conditionally independent of each other, which makes co-training and emergence of higher modularity difficult. In contrast to DNNs, biological neurons in mammalian brains display substantial dependency patterns. Specifically, biological neural networks encode representations by so-called neuronal assemblies: groups of neurons interconnected by strong synaptic interactions and sharing joint semantic content. The resulting population coding is essential for human cognitive and mnemonic processes. Here, we propose a novel Biologically Enhanced Artificial Neuronal assembly (BEAN) regularization 1 to model neuronal correlations and dependencies, inspired by cell assembly theory from neuroscience. Experimental results show that BEAN enables the formation of interpretable neuronal functional clusters and consequently promotes a sparse, memory/computation-efficient network without loss of model performance. Moreover, our few-shot learning experiments demonstrate that BEAN could also enhance the generalizability of the model when training samples are extremely limited. 
    more » « less