skip to main content


Title: Computational Watermark Enhancement in Leonardo’s Codex Leicester
A better understanding of the inner structural features (watermarks and chain line/wire intervals) of the manuscript papers of Leonardo da Vinci (1452-1519) can provide valuable information regarding chronology, geographic origins, and studio practice. For valid conclusions, however, clear representations of watermarks and chain line/wires are required. While the easient way to capture these unique physical characteristics of paper is via transmitted light, they can be difficult to decipher when writing and other surface marks found on the recto (front/obverse) and the verso (back/reverse) of the sheet obscure them. Using Leonardo's Codex Leicester (Bill Gates Collection), complied circa 1508-1510, as a case study, a computational approach was designed to minimize surface writing to enhance the watermarks and chain lines/wires detectable in the paper, by subtracting out diffuse specular (normal) light images of the recto and verso sides from the transmitted light image. This is accomplished by posing the problem as a mathematical optimization problem, and solving for the optimal weights is fast and robust.  more » « less
Award ID(s):
1822007
NSF-PAR ID:
10137970
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the American Institute for Conservation
ISSN:
0197-1360
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diffractive optics are structured optical surfaces that manipulate light based on the principles of interference and diffraction. By carefully designing the diffractive optical elements, the amplitude, phase, direction, and polarization of the transmitted and reflected light can be controlled. It is well-known that the propagation of light through diffractive optics is sensitive to changes in their structural parameters. In this study, a numerical analysis is conducted to evaluate the capabilities of slanted-wire diffraction gratings to function opto-mechanically in the infrared spectral range. The slanted wire array is designed such that it is compatible with fabrication by two-photon polymerization, a direct laser-writing approach. The modeled optical and mechanical capabilities of the diffraction grating are presented. The numerical results demonstrate a high sensitivity of the diffracted light to changes in the slant angle of the wires. The compressive force by which desired slant angles may be achieved as a function of the number of wires in the grating is investigated. The ability to fabricate the presented design using two-photon polymerization is supported by the development of a prototype. The results of this study suggest that slanted-wire gratings fabricated using two-photon polymerization may be effective in applications such as tunable beam splitting and micro-mechanical sensing. 
    more » « less
  2. Abstract

    In this study, we explored the potential contribution of the gut microbiome to reproductive isolation in tunnelling dung beetles, usingOnthophagus taurus(Schreber, 1759) and its sister speciesO. illyricus(Scopoli, 1763) as a model system (Coleoptera: Scarabaeidae: Scarabaeinae: Onthophagini). Gut microbiota play critical roles in normative development of these beetles, and are vertically inherited via a maternally derived faecal pellet called thepedestal. We first compared the developmental outcomes of individuals reared with pedestals derived from either the same or the sister species (SelfandCrossinoculation treatments, respectively). We then crossed the resulting adultO. taurusin three combinations (Selffemale XSelfmale;Selffemale XCrossmale;Crossfemale XSelfmale). We predicted that if the vertically transmitted gut microbiome plays a role in reproductive isolation by facilitating species recognition, theSelfXSelfline would have improved reproductive outcomes compared to the lines in which partners had mismatched gut microbiomes. Instead, we found that between‐partner concordance of maternally transmitted gut microbiota resulted in fewer offspring, and that this reduction was due to partial pre‐copulatory isolation as evidenced by reduced sperm transfer in theSelfXSelfline. This pattern is consistent either with microbiome‐mediated familiarity/kin recognition, or with absence of mate choice in crosses with mismatched microbiomes. We discuss our results in the light of recent research on the influence of extracellular microbial symbionts over insects' mating preferences.

     
    more » « less
  3. Abstract

    The study of the impedance mismatch between the device and its surroundings is crucial when building an acoustic device to obtain optimal performance. In reality, a high impedance mismatch would prohibit energy from being transmitted over the interface, limiting the amount of energy that the device could treat. In general, this is solved by using acoustic impedance matching layers, such as gradients, similar to what is done in optical coatings. The simplest form of such a gradient can be considered as an intermediate layer with certain qualities resting between the two media to impedance match, and requiring a minimum thickness of at least one quarter wavelength of the lowest frequency under consideration. The desired combination(s) of the (limited) available elastic characteristics and densities has traditionally determined material selection. Nature, which is likewise limited by the use of a limited number of materials in the construction of biological structures, demonstrates a distinct approach in which the design space is swept by modifying certain geometrical and/or material parameters. The middle ear of mammals and the lateral line of fishes are both instances of this method, with the latter already incorporating an architecture of distributed impedance matched underwater layers. In this paper, we develop a resonant mechanism whose properties can be modified to give impedance matching at different frequencies by adjusting a small set of geometrical parameters. The mechanism in question, like the lateral line organ, is intended to serve as the foundation for the creation of an impedance matching meta-surface. A computational study and parameter optimization show that it can match the impedance of water and air in a deeply sub-wavelength zone.

     
    more » « less
  4. Solution-phase printing of exfoliated graphene flakes is emerging as a low-cost means to create flexible electronics for numerous applications. The electrical conductivity and electrochemical reactivity of printed graphene has been shown to improve with post-print processing methods such as thermal, photonic, and laser annealing. However, to date no reports have shown the manipulation of surface wettability via post-print processing of printed graphene. Herein, we demonstrate how the energy density of a direct-pulsed laser writing (DPLW) technique can be varied to tune the hydrophobicity and electrical conductivity of the inkjet-printed graphene (IPG). Experimental results demonstrate that the DPLW process can convert the IPG surface from one that is initially hydrophilic (contact angle ∼47.7°) and electrically resistive (sheet resistance ∼21 MΩ □ −1 ) to one that is superhydrophobic (CA ∼157.2°) and electrically conductive (sheet resistance ∼1.1 kΩ □ −1 ). Molecular dynamic (MD) simulations reveal that both the nanoscale graphene flake orientation and surface chemistry of the IPG after DPLW processing induce these changes in surface wettability. Moreover, DPLW can be performed with IPG printed on thermally and chemically sensitive substrates such as flexible paper and polymers. Hence, the developed, flexible IPG electrodes treated with DPLW could be useful for a wide range of applications such as self-cleaning, wearable, or washable electronics. 
    more » « less
  5. Abstract

    Metal‐carbon nanotube (CNT) hybrid fibers are emerging materials for light‐weight conductors that can replace common metallic conductors. One of the main challenges to their development is the poor affinity between CNT and metals. In this work, a new approach for fabrication of CNT/Cu core‐shell fibers is demonstrated that outperforms the commercial Cu wires in terms of specific conductivity, ampacity, and strength. By introducing thiol groups to the surface of CNT fibers, a dense Cu coating with enhanced adhesion is obtained. Consequently, CNT/Cu core‐shell fibers with specific conductivity of 3.6 × 107S m−1and tensile strength of 1 GPa, which is almost five times higher than commercial Cu wires, are produced. Due to strong interaction of thiol functional groups and Cu atoms, the fiber can preserve its integrity and conductivity after >500 fatigue bending cycles. Furthermore, the ampacity of the composite wire reaches to 1.04 × 105A cm−2, which corresponds to a specific ampacity two times higher than that of commercial Cu wires. The interfacial design between Cu and CNT presented here is versatile and can be implemented in other processing and deposition methods.

     
    more » « less