skip to main content


Title: Cationic Bottlebrush Polymers from Quaternary Ammonium Macromonomers by Grafting‐Through Ring‐Opening Metathesis Polymerization
Abstract

Cationic bottlebrush homopolymers are polymerized using a grafting‐through approach by ring‐opening metathesis polymerization (ROMP) to afford well‐defined polymers. Quaternary ammonium macromonomers (MMs) are prepared by quaternizing tertiary amine MMs synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The quaternary ammonium MMs undergo ROMP to target molecular weights (Mn= 30 000–100 000 g mol−1) and a low dispersity (Đ= 1.10–1.30). Halide‐ligand exchange between the third generation Grubbs catalyst (G3) and halide counter ions (bromide and iodide ions) of MMs changes the catalyst activity throughout ROMP, causing it to deviate from pseudo‐first order kinetic behavior; however, the polymerization still follows controlled behavior without significant catalyst termination. Increasing steric bulk of the MMs decreases the polymerization rate as well. Amphiphilic block copolymers are synthesized by sequential polymerization of quaternary ammonium MMs and polystyrene (PS) MMs. Using a PS macroinitiator affords block copolymers with lowerĐvalues as compared to the less active cationic macroinitiator.

 
more » « less
Award ID(s):
1828408
NSF-PAR ID:
10138013
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Chemistry and Physics
Volume:
221
Issue:
5
ISSN:
1022-1352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    True tertiary architectures with defined local secondary structures are rare in synthetic systems. Adapting well‐developed synthetic building blocks and controlling their folding through diverse interactions can be a general approach toward this goal. In this contribution, the synthesis of 3D hierarchical assemblies with distinct secondary domains formed through the intramolecular folding of a block copolymer containing a coil‐like poly(styrene) (PS) block with a helical poly(isocyanide) block induced by phenyl‐pentafluorophenyl quadrupole interactions is reported. The PS block is prepared via atom‐transfer radical polymerization and end functionalized with a nickel complex that serves as a macroinitiator for the polymerization of chiral isocyanides bearing pentafluorophenyl pendants. The folding behavior of the coil‐helix block copolymers is investigated by dynamic light scattering, NMR spectroscopy, wide‐angle X‐ray scattering, and differential scanning calorimetry.

     
    more » « less
  2. Abstract

    The ring‐opening metathesis polymerization (ROMP) of cyclopropenes using hydrazonium initiators is described. The initiators, which are formed by the condensation of 2,3‐diazabicyclo[2.2.2]octane and an aldehyde, polymerize cyclopropene monomers by a sequence of [3+2] cycloaddition and cycloreversion reactions. This process generates short chain polyolefins (Mn≤9.4 kg mol−1) with relatively low dispersities (Đ≤1.4). The optimized conditions showed efficiency comparable to that achieved with Grubbs’ 2ndgeneration catalyst for the polymerization of 3‐methyl‐3‐phenylcyclopropene. A positive correlation between monomer to initiator ratio and degree of polymerization was revealed through NMR spectroscopy.

     
    more » « less
  3. Abstract

    The ring‐opening metathesis polymerization (ROMP) of cyclopropenes using hydrazonium initiators is described. The initiators, which are formed by the condensation of 2,3‐diazabicyclo[2.2.2]octane and an aldehyde, polymerize cyclopropene monomers by a sequence of [3+2] cycloaddition and cycloreversion reactions. This process generates short chain polyolefins (Mn≤9.4 kg mol−1) with relatively low dispersities (Đ≤1.4). The optimized conditions showed efficiency comparable to that achieved with Grubbs’ 2ndgeneration catalyst for the polymerization of 3‐methyl‐3‐phenylcyclopropene. A positive correlation between monomer to initiator ratio and degree of polymerization was revealed through NMR spectroscopy.

     
    more » « less
  4. Abstract

    Cell‐based therapies are gaining prominence in treating a wide variety of diseases and using synthetic polymers to manipulate these cells provides an opportunity to impart function that could not be achieved using solely genetic means. Herein, we describe the utility of functional block copolymers synthesized by ring‐opening metathesis polymerization (ROMP) that can insert directly into the cell membrane via the incorporation of long alkyl chains into a short polymer block leading to non‐covalent, hydrophobic interactions with the lipid bilayer. Furthermore, we demonstrate that these polymers can be imbued with advanced functionalities. A photosensitizer was incorporated into these polymers to enable spatially controlled cell death by the localized generation of1O2at the cell surface in response to red‐light irradiation. In a broader context, we believe our polymer insertion strategy could be used as a general methodology to impart functionality onto cell‐surfaces.

     
    more » « less
  5. Abstract

    Cell‐based therapies are gaining prominence in treating a wide variety of diseases and using synthetic polymers to manipulate these cells provides an opportunity to impart function that could not be achieved using solely genetic means. Herein, we describe the utility of functional block copolymers synthesized by ring‐opening metathesis polymerization (ROMP) that can insert directly into the cell membrane via the incorporation of long alkyl chains into a short polymer block leading to non‐covalent, hydrophobic interactions with the lipid bilayer. Furthermore, we demonstrate that these polymers can be imbued with advanced functionalities. A photosensitizer was incorporated into these polymers to enable spatially controlled cell death by the localized generation of1O2at the cell surface in response to red‐light irradiation. In a broader context, we believe our polymer insertion strategy could be used as a general methodology to impart functionality onto cell‐surfaces.

     
    more » « less