skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cationic Bottlebrush Polymers from Quaternary Ammonium Macromonomers by Grafting‐Through Ring‐Opening Metathesis Polymerization
Abstract Cationic bottlebrush homopolymers are polymerized using a grafting‐through approach by ring‐opening metathesis polymerization (ROMP) to afford well‐defined polymers. Quaternary ammonium macromonomers (MMs) are prepared by quaternizing tertiary amine MMs synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The quaternary ammonium MMs undergo ROMP to target molecular weights (Mn= 30 000–100 000 g mol−1) and a low dispersity (Đ= 1.10–1.30). Halide‐ligand exchange between the third generation Grubbs catalyst (G3) and halide counter ions (bromide and iodide ions) of MMs changes the catalyst activity throughout ROMP, causing it to deviate from pseudo‐first order kinetic behavior; however, the polymerization still follows controlled behavior without significant catalyst termination. Increasing steric bulk of the MMs decreases the polymerization rate as well. Amphiphilic block copolymers are synthesized by sequential polymerization of quaternary ammonium MMs and polystyrene (PS) MMs. Using a PS macroinitiator affords block copolymers with lowerĐvalues as compared to the less active cationic macroinitiator.  more » « less
Award ID(s):
1828408
PAR ID:
10138013
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Chemistry and Physics
Volume:
221
Issue:
5
ISSN:
1022-1352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ring‐opening metathesis polymerization (ROMP) of cyclopropenes using hydrazonium initiators is described. The initiators, which are formed by the condensation of 2,3‐diazabicyclo[2.2.2]octane and an aldehyde, polymerize cyclopropene monomers by a sequence of [3+2] cycloaddition and cycloreversion reactions. This process generates short chain polyolefins (Mn≤9.4 kg mol−1) with relatively low dispersities (Đ≤1.4). The optimized conditions showed efficiency comparable to that achieved with Grubbs’ 2ndgeneration catalyst for the polymerization of 3‐methyl‐3‐phenylcyclopropene. A positive correlation between monomer to initiator ratio and degree of polymerization was revealed through NMR spectroscopy. 
    more » « less
  2. Abstract True tertiary architectures with defined local secondary structures are rare in synthetic systems. Adapting well‐developed synthetic building blocks and controlling their folding through diverse interactions can be a general approach toward this goal. In this contribution, the synthesis of 3D hierarchical assemblies with distinct secondary domains formed through the intramolecular folding of a block copolymer containing a coil‐like poly(styrene) (PS) block with a helical poly(isocyanide) block induced by phenyl‐pentafluorophenyl quadrupole interactions is reported. The PS block is prepared via atom‐transfer radical polymerization and end functionalized with a nickel complex that serves as a macroinitiator for the polymerization of chiral isocyanides bearing pentafluorophenyl pendants. The folding behavior of the coil‐helix block copolymers is investigated by dynamic light scattering, NMR spectroscopy, wide‐angle X‐ray scattering, and differential scanning calorimetry. 
    more » « less
  3. Abstract Seed-mediated synthesis strategies, in which small gold nanoparticle precursors are added to a growth solution to initiate heterogeneous nucleation, are among the most prevalent, simple, and productive methodologies for generating well-defined colloidal anisotropic nanostructures. However, the size, structure, and chemical properties of the seeds remain poorly understood, which partially explains the lack of mechanistic understanding of many particle growth reactions. Here, we identify the majority component in the seed solution as an atomically precise gold nanocluster, consisting of a 32-atom Au core with 8 halide ligands and 12 neutral ligands constituting a bound ion pair between a halide and the cationic surfactant: Au32X8[AQA+•X-]12(X = Cl, Br; AQA = alkyl quaternary ammonium). Ligand exchange is dynamic and versatile, occurring on the order of minutes and allowing for the formation of 48 distinct Au32clusters with AQAX (alkyl quaternary ammonium halide) ligands. Anisotropic nanoparticle syntheses seeded with solutions enriched in Au32X8[AQA+•X-]12show narrower size distributions and fewer impurity particle shapes, indicating the importance of this cluster as a precursor to the growth of well-defined nanostructures. 
    more » « less
  4. Abstract The first well‐controlled aqueous atom‐transfer radical polymerization (ATRP) conducted in the open air is reported. This air‐tolerant ATRP was enabled by the continuous conversion of oxygen to carbon dioxide catalyzed by glucose oxidase (GOx), in the presence of glucose and sodium pyruvate as sequential sacrificial substrates. Controlled polymerization using initiators for continuous activator regeneration (ICAR) ATRP of oligo(ethylene oxide) methyl ether methacrylate (OEOMA,Mn=500) yielded polymers with low dispersity (1.09≤Đ≤1.29) and molecular weights (MWs) close to theoretical values in the presence of pyruvate. Without added pyruvates, lower MWs were observed due to generation of new chains by H2O2formed by reaction of O2with GOx. Successful chain extension of POEOMA500macroinitiator with OEOMA300(Đ≤1.3) and Bovine Serum Albumin bioconjugates (Đ≤1.22) confirmed a well‐controlled polymerization. The reactions in the open air in larger scale (25 mL) were also successful. 
    more » « less
  5. Abstract Atom transfer radical polymerization (ATRP) of oligo(ethylene oxide) monomethyl ether methacrylate (OEOMA500) in water is enabled using CuBr2with tris(2‐pyridylmethyl)amine (TPMA) as a ligand under blue or green‐light irradiation without requiring any additional reagent, such as a photo‐reductant, or the need for prior deoxygenation. Polymers with low dispersity (Đ = 1.18–1.25) are synthesized at high conversion (>95%) using TPMA from three different suppliers, while no polymerization occurred with TPMA is synthesized and purified in the laboratory. Based on spectroscopic studies, it is proposed that TPMA impurities (i.e., imine and nitrone dipyridine), which absorb blue and green light, can act as photosensitive co‐catalyst(s) in a light region where neither pure TPMA nor [(TPMA)CuBr]+absorbs light. 
    more » « less