The fabrication of truly hierarchically folded single‐chain polymeric nanoparticles with primary, secondary, and defined 3D architecture is still an unfulfilled goal. In this contribution, a polymer is reported that folds into a well‐defined 3D structure from a synthetic sheet‐helix block copolymer. The sheet‐like poly(
True tertiary architectures with defined local secondary structures are rare in synthetic systems. Adapting well‐developed synthetic building blocks and controlling their folding through diverse interactions can be a general approach toward this goal. In this contribution, the synthesis of 3D hierarchical assemblies with distinct secondary domains formed through the intramolecular folding of a block copolymer containing a coil‐like poly(styrene) (PS) block with a helical poly(isocyanide) block induced by phenyl‐pentafluorophenyl quadrupole interactions is reported. The PS block is prepared via atom‐transfer radical polymerization and end functionalized with a nickel complex that serves as a macroinitiator for the polymerization of chiral isocyanides bearing pentafluorophenyl pendants. The folding behavior of the coil‐helix block copolymers is investigated by dynamic light scattering, NMR spectroscopy, wide‐angle X‐ray scattering, and differential scanning calorimetry.
more » « less- Award ID(s):
- 1902917
- NSF-PAR ID:
- 10449475
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Rapid Communications
- Volume:
- 42
- Issue:
- 19
- ISSN:
- 1022-1336
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract p ‐phenylene vinylene) (PPV) block is synthesized via the ring‐opening metathesis polymerization of a thymine‐bearing dialkoxy‐substituted [2.2]paracyclophane‐1,9‐diene. The PPV block is terminated with a Pd complex using a Pd‐containing chain‐terminating agent. The terminal Pd complex catalyzes the polymerization of isocyanide monomers with side‐chains containing either a chiral menthol or an achiral diaminopyridine resulting in the formation of a helical poly(isocyanide) (PIC) random copolymer. The PIC side‐chains are capable of engaging in complementary hydrogen‐bonding with thymine units along the PPV block resulting in the folding of the two secondary structural domains into a well‐defined 3D structure. The folding and unfolding of the polymer in both chloroform and THF are monitored using dynamic light scattering and NMR spectroscopy. This work is the first example of a hierarchically folded synthetic polymer featuring a defined 3D structure achieved by using two different polymer backbones with two distinct secondary structures. -
We report the first heterotelechelic helical poly(methacrylamide) (PMAc) bearing orthogonal supramolecular binding sites on its chain-ends synthesized through a combination of reversible addition–fragmentation chain-transfer (RAFT) polymerization and thiol–bromo “click” chemistry. The heterotelechelic PMAc was assembled with two monotelechelic polymers featuring different secondary structures, namely a coil-like poly(styrene) and a helical poly(isocyanide), resulting in the formation of a coil–helix–helix supramolecular triblock copolymer through orthogonal metal coordination and hydrogen bonding interactions. Triblock assembly was confirmed through 1 H NMR spectroscopy, isothermal titration calorimetry (ITC) and viscometry. The individual polymer blocks retained their secondary structures in the final triblock copolymer, as evidenced by circular dichroism (CD) spectroscopy. Our synthetic strategy expands the toolbox of triblock copolymers featuring structural motifs similar to the ones found in proteins and provides the potential for the development of other complex multifunctional polymeric ensembles.more » « less
-
Thermoplastic elastomers based on ABA triblock copolymers are typically limited in modulus and strength due to crack propagation within the brittle regions when the hard end-block composition favors morphologies that exhibit connected domains. Increasing the threshold end-block composition to achieve enhanced mechanical performance is possible by increasing the number of junctions or bridging points per chain, but these copolymer characteristics also tend to increase the complexity of the synthesis. Here, we report an in situ polymerization method to successfully increase the number of effective junctions per chain through grafting of poly(styrene) (PS) to a commercial thermoplastic elastomer, poly(styrene)–poly(butadiene)–poly(styrene) (SBS). The strategy described here transforms a linear SBS triblock copolymer–styrene mixture into a linear-comb-linear architecture in which poly(styrene) (PS) grafts from the mid-poly(butadiene) (PBD) block during the polymerization of styrene. Through systematic variation in the initial SBS/styrene content, nanostructural transitions from disordered spheres to lamellar through reaction-induced phase transitions (RIPT) were identified as the styrene content increased. Surprisingly, maximum mechanical performance (Young's modulus, tensile strength, and elongation at break) was obtained with samples exhibiting lamellar nanostructures, corresponding to overall PS contents of 61–77 wt% PS (including the original PS in SBS). The PS grafting from the PBD block increases the modulus and the strength of the thermoplastic elastomer while preventing brittle fracture due to the greater number of junctions afforded by the PS grafts. The work presented here demonstrates the use of RIPT to transform standard SBS materials into polymer systems with enhanced mechanical properties.more » « less
-
ABSTRACT Herein, we report the design and synthesis of a block copolymer (BCP) with a high Flory–Huggins interaction parameter to access 10 nm feature sizes for potential lithographic applications. The investigated BCP is poly[(2‐methyl‐2‐oxazoline)‐
block ‐styrene] (PMeOx‐b ‐PS), where the PMeOx segment functions as a hydrophilic segment. Two BCPs with different molecular weights were prepared using PMeOx as macroinitiator for copper(0) mediated controlled radical polymerization. The thin film self‐assembly of the obtained PMeOx‐b‐ PS was performed by solvent annealing and investigated by atomic force microscopy. Both polymers formed PMeOx cylinders in a PS matrix with an average cylinder diameter of 10.5 nm. Additionally, the ability of the PMeOx domains to selectively degrade under ultraviolet irradiation was explored. It was shown that scission of the PMeOx block does occur selectively, and furthermore that the degraded domains can be removed while leaving the PS matrix intact. By combining synthetic accessibility, small feature sizes, and a selectively cleavable domain, this new BCP system holds significant promise as a lithographic mask for patterning surfaces with high precision. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1349–1357 -
We report a facile synthetic approach to create stable radical block copolymers containing a secondary fluorinated block via anionic polymerization using a bulky, sterically hindered countercation composed of a sodium ion and di-benzo-18-crown-6 complex. The synthetic conditions described in this report allowed for controlled molecular weights and dispersity (<1.3) of both homopolymers: poly(2,2,6,6-tetramethyl-1-piperidinyloxy-methacrylate) (PTMA) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) as well as their block copolymers (PTMA- b -PTFEMA). The stable radical concentration of the polymers was determined by electron spin resonance (ESR) and showed radical content above 70%. An analysis of the microphase morphologies in PTMA- b -PTFEMA thin films via atomic force microscopy (AFM) and grazing incidence small angle X-ray scattering (GISAXS) showed clear evidence of long-range ordering of lamellar and cylindrical morphologies with 32 and 36 nm spacing, respectively. The long-range ordering of the morphologies was developed with the aid of two separate neutral layers: PTMA- ran -PTFEMA- ran -poly(hydroxyl ethyl methacrylate) (PHEMA) and poly(isobutyl methacrylate) (PiBMA)- ran -PTFEMA- ran -PHEMA, which helped us corroborate, along with the Zisman method, the surface energy estimation of PTMA to be 30.1 mJ m −2 .more » « less